
10/04/2001
1

Standardizing Software
Documentation Using XML

John E. Cooke - University of Saskatchewan
– Jim. E. Greer - University of Saskatchewan
– Judi Thomson - Pacific Northwest National Lab
– Jeff Dyck - Hamilton Myriadgate Technology
– Reagan Penner - PMC-Sierra

10/04/2001
2

Abstract
Firms that develop software must document both the
software product and the process by which it was
developed. Information from past projects is invaluable
for improving the software production process.
Information such as time-lines, critical paths, estimations
and process metrics is often kept, but seldom kept in a
standardized manner that permits retrieval. XML provides
a means of implementing a standard set of documents in a
manner that permits retrieval across many different
projects. A basic set of documents will be defined, and
work in implementing this document set in XML for a
small software firm will be described.

10/04/2001
3

Background – Basic Concepts

• A software project.
• Software documentation.
• Components of software documentation.
• An information base for software

documentation.
• Retrieval from that information base.

10/04/2001
4

A Software Project

• Some specific piece of software as the main
deliverable.

• Software made by a specific group of
developers for a defined group of users.

• Made within constraints of time, money,
and quality.

• Made by following a particular defined
process.

10/04/2001
5

Software Documentation

• Facts about the software itself (the product):
– for using the current version of the software,
– for developing/enhancing/fixing the software.

• Facts about the software development (the
project)

• Production of software documentation:
– as a by-product of the development process,
– as a separate activity by professional writers.

10/04/2001
6

Components of Software
Documentation

• Text.
• Pictures and diagrams.
• Code or prototype examples.
• Tables, lists and numbers (static media).
• Video and audio (dynamic media).

10/04/2001
7

An Information Base for Software
Documentation

• Organized and complete repository of
software documentation artifacts.

• Should these artifacts (or their metadata) be
stored as XML?

• What must be included in the information
base?

• How can it be implemented?

10/04/2001
8

Retrieval from a Software
Information Base

• Retrieval by specification of various
components.

• Retrieval based on a query.
• Retrieval based on defined needs.
• Retrieval based on assumed needs

(adaptation).
• Presentation in various forms (more

adaptation).

10/04/2001
9

Background – Users and
Developers

• Users of software documentation.
• Purposes in using software

documentation.
• Problems in using conventional software

document.
• Problems in developing software

documentation.

10/04/2001
10

Users of Software
Documentation

• Developers.
• Users of the software.
• Maintainers.
• Managers.
• Auditors.

10/04/2001
11

Purposes in Using Software
Documentation

• To answer specific questions.
• To obtain general understanding.
• To learn how to use (help and tutorials).
• To review performance.
• To identify causes of observed problems.
• As the start to a redesign process.

10/04/2001
12

Problems in Using Software
Documentation

• Multiple formats and platforms (no
integration).

• Incomplete or unavailable.
• Not current, inaccurate.
• Access methods don’t match needs (i.e. a

pdf document rather than a tutorial).
• Mismatch between level of documentation

and skills of user.

10/04/2001
13

Problems in Developing
Software Documentation

• Multiple formats and platforms.
• Incompatible skills (person and application,

person and knowledge).
• Documentation is often an extra task with no

immediate reward or necessity.
• Need for access control and configuration

management (of documentation as well as
code).

10/04/2001
14

Big Question Number One

If software documentation is a problem that
has been solved, why are so many “how to”
books sold for any common software
product, and why is a great deal of training
required for most in-house software
systems?

10/04/2001
15

Big Question Number Two

Software documentation and software
project documentation have traditionally
been treated as two sets of distinctive
problems. Is it reasonable to think of
software documentation as a single problem
with many interrelated parts?

10/04/2001
16

Big Question Number Three

If software documentation can be treated as
a (massive) single problem, does XML and
its related technologies offer the potential
for an integrated solution?

10/04/2001
17

Three Research Projects
Involving Software

Documentation and XML
• Reagan’s work (using an XML framework to link

software document management and source code
management systems).

• Jeff’s work (developing new forms of XML-
based software documentation and investigating
how to develop and how to use it).

• Judi’s work (semi-automated generation of
tutorials from objects represented in XML).

10/04/2001
18

Reagan’s Project
XML-ISDE

An XML framework for integrating
document management and source code

management systems.

10/04/2001
19

The Firm in Question

• Manufacturer of devices with embedded
software.

• Strong emphasis on configuration
management for both device and software.

• Completely separate systems for source
code control and documentation.

• No major change considered possible.

10/04/2001
20

Research Goals

To solve problems found in current software
development environment (SDE).
– Promote an integrated SDE than can be

browsed.
– Link source code with its associated

documentation.
– Support versioning in the integrated SDE.
– Ensure flexibility for future change.

10/04/2001
21

Integration Model

10/04/2001
22

The Existing SDE

Tools

Source Code
System

Code
Repository

Code Domain Document Domain
Tools

Document Management
System

Document
Repository

Developers

10/04/2001
23

The XML-ISDE Framework
Presentation/Environment

Layer browser

editor
link editor

Data Management

Linking/Mapping Layer

Global Repository

DTD editor XML Layer

10/04/2001
24

Domain Integration

10/04/2001
25

Design of the XML-ISDE

10/04/2001
26

Configuration_Item Name: XML Layer Configuration_id: 1283

Artifacts
System design

Data management
Environment layer
Presentation layer

Artifact_id
128314
1283112

12831103
12831106

Revision Level:
A DCB HGFE I
1.1 2.11.1 1.1 1.2
1.0 1.01.0 1.0 1.0

1.01 1.021.02 1.02 1.02
1.15 1.21.15 1.2 1.2

The eXtensible Control Table

10/04/2001
27

Implementation
(create software design)

Requirements
specification

Ver. 1.1

Requirements
specification

Ver. 1.0

System Design

Ver. 1.0

Ver. 1.1

100 series 200 series

Process Diagram

Ver. 3.5

300 series
Software Design
not yet created

Persistence package
ver. 1.1

Linking package
ver. 2.3

XML package
ver. 1.1

Software Design
Ver. 3.0

10/04/2001
28

10/04/2001
29

DOM Tree Representation

10/04/2001
30

Implementation Framework

10/04/2001
31

Conclusions From Reagan’s
Project

• It is possible to use XML to create an
improved documentation system linking the
code domain with the document domain.

• It is difficult to cause the necessary
organizational change to adopt the change.

• Stronger conviction than ever that software
documentation must be treated as a
complex whole.

10/04/2001
32

Jeff’s Project - Standardizing
Documentation Using XML

• Documentation problems in small firms.
• Requirements for a documentation system.
• Why XML for documentation?
• Developing a document set.
• A document process.
• Extensions.
• Benefits and conclusions.

10/04/2001
33

Small Software Firms
• Small software firms face many constraints.
• Documentation standards not a priority - no

money to build standards and processes.
• Result is documentation that is disorganized,

incomplete, and in many different formats.
• Maintenance problems are severe.

They need a simple, effective way of
standardizing documentation

10/04/2001
34

Requirements for a
Documentation System

• Simple to install and use.
• Adoptable with minimum training.
• Extensible to different project types.
• Repeatable by different developers.
• Facilitate enforcing standards.
• Efficient in the use of time.

10/04/2001
35

Why XML for
Documentation?

• DTDs can enforce standardized format.
• Tools available – more under development.
• Flexibility through XSL for display and

reporting.
• Extensibility as new needs arise.
• Open source industry standard, applicable

across different platforms.

10/04/2001
36

The Approach
• Based on experimental work in a software

engineering class.
• Examined the (arbitrary) documents

associated with a number of different
software projects done in the past by the
firm in question.

• Identified the documents that were common
to most projects.

10/04/2001
37

The Approach - continued
• Defined each of the recurring types of

documents in terms of the sections they
contain.

• Identified features, recurring sections,
sequencing etc. Define this formally in the
language of DTDs.

• By this means defined a basic set of
documents to form the basis of a standard.

10/04/2001
38

The Document Set

The documents selected cover three main
areas of operation:

– Sales
– Project Management
– Development

10/04/2001
39

Document Set - Sales

• RFP response.
• Used to respond to RFPs. Explains the approach to

the project, addresses specific sections from RFP.
• Presents timeline and bid.

• Statement of work.
• Indicates to client what work will be done in the

project.
• Serves as the basis of the contract between firm and

client.

10/04/2001
40

Document Set – Project Management - 1

• Task network.
• Identifies all tasks and milestones in a project, along

with effort estimates.
• Indicates how images from packages should be

included and versioned.

• Allocations.
• Allocates team members to a given project.
• Associates team member with task and time.

• Progress report.
Reports the current status of the project, current issues

and actions taken.

10/04/2001
41

Document Set – Project Management - 2
• Meeting.

• Identifies an agenda for a meeting, the proceedings
from the meeting, and conclusions reached.

• Time entries.
• Contains time entries for employees on a given

project.

• Time entries report.
• Generated from time entries document.
• Summarizes time entries for a given project or

employee, over a given time period.

10/04/2001
42

Document Set – Development - 1

• Requirements.
• Description of all the requirements for the project.

Information comes from RFP and RFP response,
and related meeting documents.

• Architecture.
• Description of the framework and architecture of the

system. Covers layering, database interactions and
interfaces.

• UML package.
• All UML diagrams and associated notes.

10/04/2001
43

Document Set – Development - 2

• Data model.
• Provides path to data model diagrams.

• URL scheme.
• Defines the URL scheme for a web-based

component of the project, Explains naming
conventions and domain names used by the project.

• Directory structure.
• Defines the file hierarchy of the components of the

project in the file system.

10/04/2001
44

Document Set – Development - 3
• Testing report.

• Documents a test case, the results of executing the
test case, and recommendations or bug reports.

• Presentation
• Gives links to presentation materials in whatever

form they were generated for each presentation.
Consists of index, introduction, links and
conclusion.

• Metrics
• Presents the metrics for a project up to some given

time. Most metric information is numeric.

10/04/2001
45

Document Set Components

• Each document in the document set has the
following associated components:
– Fully documented DTD.
– Working DTD.
– XML template.
– XSL templates as needed.

10/04/2001
46

Documenting the DTDs

• Each DTD is documented as follows:
– <tag_name> - Short tag description.
– Content model – components or PCDATA.
– Attribute definition.
– Tag source -the namespace that the tag is from.
– Element and attribute declarations.

10/04/2001
47

Process for Documentation
• XML Document Generation

– Templates - fast, helps learning curve
– Tools - validating parser
– XSL – formatting for various needs

• Document Access
– Common repository
– Browseable
– Directory and URL structure

• Document Maintenance
– Document set
– Versions, guidelines

10/04/2001
48

Extensions and Evolution
• DTDs need time and use to mature

– Auto-generation tools
• XML DMS

– Version control
– Enforce file/URL structure

• Intelligent XML servers
– Apache Cocoon, Java Servlet

• Good XML editor
– Real-time validation - colour code tags, errors, etc

10/04/2001
49

Benefits
• Promotes standardized documentation set and

format
• Process-building easier
• Maintenance efficiency increased
• More professional documentation format
• Data mining potential (project histories)
• Faster production of new documentation

– No formatting required
– Structure pre-defined

10/04/2001
50

Conclusions from Jeff’s
Project

• Provides a practical starting point.
• More experimentation is needed.
• The process is an important part.
• Pilot successful in a small firm.
• Are there similar projects ?
• Why not Docbook?

10/04/2001
51

Judi’s Project -APHID
Applying Patterns to Hypermedia

Instructional Design
• APHID is an object-oriented approach to

hypermedia design.
• Uses patterns for communication between

developers.
• Semi-automatic generation of tutorials.
• Supports multiple types of instruction.
• Explicitly represents sequences and domain

structure.

10/04/2001
52

Patterns used by Aphid

Two types of patterns are used to guide the
construction process:
– Presentation patterns represented as XSLT and

CSS sheets.
– Instructional patterns represent the instructional

plan :
Review, Depth First, Spiral, Remedial.

10/04/2001
53

Guidelines for Creating
Hypermedia

Hypermedia design involves the same
stages as software design.
– Data modelling.
– Navigational design modelling.
– Run-time behaviour model.
– User-interface design.
– Method for moving to implementation.

10/04/2001
54

Technologies used in APHID

The software is a prototype drawing from a
number of different technologies
– The bulk of the software is written in C++ .
– The output is XML which is then formatted and

ordered with XSLT.
– The output is then converted to HTML using an

XSLT processing engine.

10/04/2001
55

Creating an Application with
APHID

Creating applications consists of 4 steps:
– Create concept maps.
– Create and assign data elements.
– Choose application parameters.
– Generate the application.

10/04/2001
56

Concept Maps

10/04/2001
57

Instructional Classes

Instructional classes are teaching structures
i.e. quizzes, explanations, questions, or
examples.

10/04/2001
58

Instructional Class Document Types

<!--Quiz -->
<!ELEMENT quiz (description?, quiz_item+)+>
<!ELEMENT quiz_item (description?|(question,answer)+)>
<!ELEMENT question (#PCDATA)>
<!ELEMENT answer (#PCDATA)>
<!ELEMENT description (#PCDATA)>

<!ATTLIST description
type (intro|summary|conclusion|explanation|preformatted)
"explanation">

<!--Question List-->
<!ELEMENT question_list (question_item)+>
<!ELEMENT question_item (question, answer?)>
<!--Instructions-->
<!ELEMENT instructions (description+, instruction_step+)>
<!ELEMENT instruction_step (description? |action)>

10/04/2001
59

Document Type for Data Elements

<!ELEMENT data_element
(title?, description?,

(
question_list|example|instructions|index|simulation|
practise_problem|quiz|FAQ|description|narrative
)
)>
<!ATTLIST data_element
id ID #REQUIRED
name CDATA #IMPLIED
importance (critical | explain | enrich) "explain"
level (beginner | intermediate | advanced) "beginner"
>

10/04/2001
60

An Example Data Element
<list>
<description>The software is a PROTOTYPE drawing from a

number of different technologies</description>
<list_item>The bulk of the software is written in

C++</list_item>
<list_item>The output is XML which is then formatted and

ordered with XSLT </list_item>
<list_item>The output is converted to HTML using a java

XSLT processing engine </list_item>
<list_item>currently James Clark's XT (with XP as the

parser) </list_item>
</list>

10/04/2001
61

Adding Elements to Concepts

10/04/2001
62

Choosing the Application Type

Instructional Patterns control several aspects
of the final application.
– Which concepts are selected?
– The number of pages for a single concept.
– Tutorial-order for the navigational model.
– Which types of hyperlinks are selected?
– The order of the hyperlinks on a page.

10/04/2001
63

Application Settings

10/04/2001
64

Aphid’s Tasks

• Select concepts.
• Build tutorial order (graph traversal).
• Select data elements.
• Check constraints and generate XML.

10/04/2001
65

Building an Application
• Site generation starts with a traversal of the

concept map.
• Two different traversal algorithms (depth/breadth)
• Infix, prefix, postfix and combo are possible.
• Result is a list of concepts in tutorial order.
• Data elements are selected for each concept in the

tutorial list.
• Data elements selected based on type, difficulty,

and level of user.
• Rules class specifies size constraints.

10/04/2001
66

Deciding on the Presentation

• User Interface determined by XSLT and
CSS.

• Every instructional class has at least one
associated XSLT template.

• CSS governs font, colour, background.
• Easy to create sites that look and function

differently from one another.

10/04/2001
67

Final Result
• The result is a tutorial specifically

generated to meet the conditions specified.
• Currently this consists of a set of web

pages, linked together by hyperlinks.
• Many different tutorials can be generated

from the same set of resources.
• Evaluations showed the method to be

effective.

10/04/2001
68

Conclusions from Judi’s
Project

Although the resources were used to generate
web based tutorials they could just as easily
be used for other end products, such as:
– Training materials.
– Help systems.
– Adaptable user interfaces, and.
– Software documentation.

10/04/2001
69

Using XML for Effective
Software Documentation

• What is the “ideal” solution to the problem
of software documentation?

• A proposed approach using XML.
• What has to be done?
• Is it feasible today?

10/04/2001
70

The Ideal Solution
• A unified approach to complete software

documentation.
• All artifacts of a software system can be

available through a single interface.
• Code, product documentation, process

documentation, help and tutorials.
• Specific documentation generated as needed

for a particular class of user.

10/04/2001
71

Proposed Approach - XML

• XML enables a unified approach to software
documentation.

• The ideal solution differs depending on firm,
project, and users.

• XML can support the development of standard
approaches suitable for many firms.

• XML can support customization to fit the needs of
any specific firm.

10/04/2001
72

Proposed Approach - 1

• Definition of a minimum set of documents or
artifacts that comprise software documentation for
the firm in question.

• Part of this set will be used for each project.
• Each document will have an associated

DTD/Schema.
• XML wrappers will be used for non-textual

documents, such as UML diagrams.

10/04/2001
73

Proposed Approach - 2

• Each document type in the document set
will have an associated XML template
corresponding to the DTD/Schema.

• Generating each document type will be
supported by a customized editor generating
the necessary XML document.

10/04/2001
74

Proposed Approach - 3

• Each document type will have a set of
associated XSL style sheets supporting all
formats in which the document may be
needed.

10/04/2001
75

Proposed Approach - 4

• All documents will be stored in a suitable
repository/database.

• Versioning must be supported, along with
updated relationships among documents.

10/04/2001
76

Proposed Approach - 5

• Searching and browsing support will enable
finding and retrieving particular documents.

• APHID-like techniques will be used to
assemble combinations and sequences of
elements from within the document set for
help and tutorials.

10/04/2001
77

What Has To Be Done?

• Determination of minimum document set by
examination of past projects and views of
developers.

• Development of XML support for editing,
processing and storing of documents.

• Development of XSLs for document sets
through analysis of user needs and
problems.

10/04/2001
78

Is It Feasible Today ?

• It is feasible today at the level of “proof of
concept”.

• A system to do all of this could be created
for a specific project or company but would
be low on reusability.

• Further development of XML support tools
is necessary to make it routine.

10/04/2001
79

Where Will It Be Done ?

• By toolmaker firms?
• By large software development firms?
• By small software development firms?
• By all three types of firm?

The new and more effective CASE tool?

