

$\times 1 \wedge$	
- What is XML?	Definitions
- What is XML, really?	Fundamentals
- What are the Parts?	The XML Family
- What are the Tools?	Technology
- Where does XML fit?	Role
- How is XML being used?	Applications
- Where is XML going?	Conclusions

XML
 Mo re Specific Definitions

- The Extensible Markup Language (XML)
- XML 1.0 is a World Wide Web Consortium
- Recomm en dation (Febr uary 10, 1998)
- XML 1.0 Second Edition (October 6, 2000)
- XML:
- is a simple and platform-independent method for adding intell ig ence to interch ang eable data
- is an application profile or restr icted form of SGML
- XML was the result of a long effort to refine and simplify SGML

 Definitions
XML 1.0 states: - "XML is a subset of SGML" - "XML is an application profile or restricted form of SGML, the Standa rd Generalized Markup Langu age" - "XML documents are conforming SGML documents." - "XML 1.0 specifies a syntax created by subsetting an existing, widely used international text processing standard, SGML, for use on the World Wide Web" - The Goal of XML - "is to enable generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML"

$\because 1 \wedge$
 So What is SGML?
 Definition

- SGML stands for the
- Standard Generalized Markup Language
\square SGML is an international (ISO) standard
- ISO 8879:1986 Information Processing - Text and Office Systems - Standard Gen eralized Markup Language (S GML)
- "a language for document rep resentation that formalizes markup and frees it of system and processing dependencies"

The Root of the Problem

Proprietary Documents

- Traditional electronic documents
- are produced and maintained in a prop rietary and non-intelligent format
a are simply paper docume nts in a more rep roducible form
- are printed for use and rete ntion
- assume a static environment and single format use

*1^) Understanding Documents
 How We Read

- The Reader of a Document

- scans the layout and format of the contents
- identifies key information items based on the form atting
- determines what kind of document is being read
- determines the rules that apply to this kind of document
- based on these document rules, the meaning of the document can be understood
- This is a memo giving me instructions (it impacts me diredly)
- This is an article from a reputable source (/ can trust its conterts)
- This is a piece of fiction (suspend cetain expedations)
- It is a political announcement (the opposite is likely true)

ㄴ 凡
 SGML
 Fundamental Nature

－SGML
－is an attempt to introduce computers to documents and therefore to the way people think and communicate
－provides the grammar for describing the structure of a particular type，or class，of documents
－describes a document structure by declaring（or naming） its possible components and their relationships

（1＾）Generic Markup

SGML is a formalized implementation of Gene ric Markup

1 凡

SGML

Introduced the Idea of a Document Type Definition

－SGML：

－needed a means for formalizing markup so that ＜SBMODEL＝＂757＂DOCNBR＝＂757－75－0006＂SPL＝＂81205＇TSN＝＂0＂OIDATE＝＂＂ 9940106 REVDATE＝＂0＂CHAPSECT＝＂7532＂CHAPNBR＝＂万＂SEQNBR＝＂0005＂
SBTYPE＝＂STANDARD＂CHG＝＂N＂LANG＝＂EN＂REGACT＝＂NO＂＞
＜TTTLE＞
AIR－COMPRESSOR BLEED CONTRO－ENGINEBLEED VALVE EICAS STATUS computers could
－check the validity of a file
－automatic ally manipulate the contents of a document based on rules built into an application
－introduced the idea that there would be a computer－ readable set of rules that would appl y to a type of documents
－ISO 8879 defines a Document Type Definition as： ＂Rules，determined by an application，that apply S GML to the markup of documents of a particular class＂

K1 人

The SGML Experience
 The Outcome

－The SGML Standard
－Allows tag minimization
－reduc ing keybo arding costs and file size
－Allows fundamental features to be adapted
－permitting custom ization to meet application requirements
－Provides a highly flexible language for declaring document components and their relationships
－Exceptions in the DTD Rules
－An array of Dec lar ed Values for Attributes
the AND connect or
－These components were difficult to implement
－Developing SGML applications was very expensive

The SGML Experience
 The Outcome

－SGML
－Was implemented widely within the Aerospace and Military sectors
－where money was not the main consider ation
－Was not leveraged to address problems with other document technologies
－EDI
－Graphics
－Product Model Data
Metadata，Schema and Relations hips
－Business Forms

※1 人

World Wide Web
 Project Charter 1989

- Objective

- 'to allow information sharing within internationally dispersed teams"

\square Requirements

- "Integrate Information from a variety of systems"
- "Pro vide a simple, common interchange format"
- "Permit inexpensive viewers"
- "Allow information to be accessed by all hardware and software platforms"
- "Permit ke ywo rd searching"
- "Emphasize link na vigation for finding information"

World Wide Web
HyperText Markup Language (HTML)

- "SGML is a standard in Hypertext circles" T. Berners-L ee

- HTML proved

- a simple SGML application could support a unive rsal requirement to share information
- that the full complexity of SGML was not necessary
- that HTML could not adapt to meet all requirements with only one set of tags
- the use of the HTML DTD was relaxed and prone to e rror

※1 人
 The HTML Experience
 The Imperfect Solution that Changed the World

<HTML>

<HEAD><title>XML<title><HEAD>
<body bgcolor="\#FFFFFF" leftmargin="0" topmargin="0">
<TABLEBORDER="0"CELLPADDING="0" CELLSPACING="0" WIDTH="590" > <TR><TD COLSPAN ="4" VALIGN="TOP">
<P> XML stands
for the Extensible Markup Language. Formally XML is a World Wde Web Consortium for the Extensible Markup Language. Formally XML is a World W
(W3C) Recommendation dated February 10,1998. </P>
$<P><F O N T F A C E=" V e r d a n a$, Arial, Helvetica, sans serif" $\mathrm{SIZE}="-1$ " XML is the resulto an efforton the part of the W3C to specify "a simplified subset of SGML specially designed for Web applcations. This subset, called XML (Extensible Markup Language), retains the key SGML adv antages of extensibility, structure, and validation in a language that is designed to be vastly easier to learn, use, and implement than full SGML....XML has been designed for max imum expressive power, maximum teachability, and maximum ease of implementation." <l> XML, Java and the Future of the Web</l>, Jon Bosak, 1997.</P></TD> </TR></TABLE></body></html>

XML

The Answer

- XML
- Offers the ability to create new tag vocabularies
- Hence "Extensible" Markup Language
- Constrains the features of S GML
- simplifies pr ocess ing
(everything that created com plex ambiguity is remov ed)
- opens the do or to broad applic ation support
(something SGML never enjoy ed!)
- makes univers al brows er support poss ible (all owing br ows ers to only look at the instanc e)
- makes it attractive to programm ers (passing the desperate Perl hack er test)
- maintains the as surance that corr ectness can be enforced (no more error-handling code)

$\times 1 \wedge$	

SGML and Correctness

An Unforgiving Model

VALID

An SGML Document must always have a val id DTD and must always be valid under the rules of that DTD.

INVALID
An SGML Document that is not valid according to the applic able DTD receiv es no further process ing (a fatal error)

Well-Formed XML Documents

-A Well-Formed Document:

- implements the base requirements as set out in the XML Recomm endation
a follows these general parameters:
- There is a single root element that contains the complete cont ents of the doc ument
- All Elem ents must have start and end tags - no omiss ion of end tags - empty elem ents are the only ex ception

All Elem ents are neatly nested no overlap ping of ele ments

- All Entities referenced within a doc ument must be dec lared in the DTD
- All Attributes must be in quotation marks

1 人

Standalone Documents

- A Standalone Document:

- is a document that can be processed without the need to access an externally sto red DTD
- can therefore be a Well-Formed document for which there does not exist an applicable DTD
- can also be a valid document where the DTD is included within the document

- The DTD is stored in the internal subs et

XML Declaration

Just could not live without it

- Optional XML Declaration

- "XML documents may, and should, begin with an XML declaration which specifies the version of XML being used."

UCS - Universal Charader Set

Document Type Definition

Declaring the Rules

- The DTD

Rules, determined by an application, that apply X ML to the markup of documents of a particular class

- Elements - logical units of data

Logical

- Attributes - properties associated with elements

Entities - physical units of data
Physical

- Notations - the format or data type of units of data

Element Declarations

Building a DTD

- Each element within aDTD must be declared using the following syntax:

<!ELEMENT identifier content >

-The content of an Element can be:

- a "content model" that describes the content of the element
or
- explicitly "declared" as a particular kind of content

Element Identifiers

- Element Name

- Begins with a letter, an underscore (_), or a colon (:), and may additionally contain digits, periods (.) and hyphens (-)
- Examples of Element Names
- title (Element type - Title)
- body (Element type - Body)
- para (Element type - Paragr aph)
<!ELEMENT Title (\#PCDATA)>
<!ELEMENT Warning (\#PCDATA)>
- Element Names are defined by the users of the data

$\% 1 \wedge$ Model Group for Data \#PCDATA

-The Model Groupfor Datathat may contain XML Markup (i.e. entities and elements) is:

Examples: <!ELEMENT date (\#PCDATA)>
<!ELEMENT note (\#PCDATA)>

\qquad

$\times 1 \wedge$
 Model Group for Structure Connectors

- The order of elements within a Model Group is detemined by Connectors:
- ,

Sequen ce connector
-

Elements must occur and in the order indicated

OR connector
One and only one of the elements can occ ur (a choice)
-The Content Model of an Element Declaration can describe:

- Character dat a that might contain XML Markup
- Other elements (structure)
- A mixture of data and elements
-The Content Mbdel consists of:
- A primary Model Group that is required
<!ELEMENT identifier (model group) >

Element Declarations

Content Mode

Model Group for Structure

Using Connectors

a SequenceConnector

<!ELEMENT play (beginning, middle, end) >

- OR Connector
<! ELEMENT turn (left \| right) >
- Connectors can be used in combinationto describe complex structures
\square Group Open (GRPO) and Group Close (GRPC) " 0 " delimiters are used to apply connectors to nested groups
<!ELEMENT pizza (crust, (tomato | (anch ovies, peppers)))>
Element "pizza" is made up of "crust" foll owed by either "tom ato" or "anch ovies" followed by "peppers"
- Optional Occurrence Indicator
<!ELEMENT para (title?, parate xt, note?) >
- Required and Repeatable Occurrence Indic ator
<!ELEMENT chapter (title, section+, annex+) >
- Optional and Repeatable Occurrence Indic ator
$<!$ ELEMENT procedure (title, task, test*) $>$

 *1^ Model Group for Structure
 Using Occurrence Indicators

Mixed Content

A little chaos
a A content model which contains both \#PCDATA and Elements is said to hav e Mixed Content (it mixes data and structure)
<!ELEMENT p (((\#PCDATA) | b | i | a img\(\left.)^{*}\right)>\)

<!ELEMENT tex
\[
\left(\left((\# \text { P CDATA) | emph | xref | ftref })^{*}\right)>\right.
\]

Optional Repeat ing OR groups are requir ed for Mix ed Content in XML
Generally us ed within DTDs to represent the content of elements that will embody lar ge quantities of authored content.

※1人

K1^
 Model Group for Structure
 Occurrence Indicators

- Elements and Groups can bef ollowed by an Occurrence Indicator

-? Optional - 0 or 1

The elem ent may occur once or it may not
$\square+\quad$ Required and Repeatable-1 or more
The elem ent must occur and may occur mor e than once

- Optional and Repeatable-0 or more

The elem ent may occur and, if it occurs, may occur mor e than once

- No Occurrence Indicator - one and only one

The elem ent must occur once and only once

- Element Content

- can be a "content model", or
- can be explicitly "declared" as a particular kind of content
- There are two types of explicitly "declared" Element Content
- EMPTY
- ANY

Document Instance

Elements

- The Elements are used in instances in accordance with their hierarchical position

Start Tag STAGO Start Tag Open
<memo> TAGC Tag Close
End Tag ETAGO End Tag Open

Empty Tag

The XMIL Experience
A Simple Syntax for DTDs

-A declared content of ANY (key word)

- ANY means that any Element declared in the DTD referenced by that DOCTYPE declaration is allowed inside the Element as well as \#PCDATA
<!ELEMENT doc (chap)>
<! ELEMENT chap (title,p+)>
<! ELEMENT title (\#PCDATA)>
<! ELEMENT p ANY>
This declaration for p is equivalent to:
<!ELEMENT p (\#PCDATA | doc | chap| tite | p)* >
ANY

※1人

The XML Experience
 Neatly Structu red Data

<?xml version="1.0" enco ding="iso- 8859-1"?>
<!DOCTYPE hansard SYSTEM "../hansard.dt d">
<hansard hansard- language="en">
<front>
<facepage day="15" year=" 1999" month="Nov ember" day-nam e="Monday"/>
<preface><text id="x000001">The House met at 11 a.m.</text></preface>
</front><hansard-body><intro><prayer/></intro>
<order id="00001" rubric="pr ivate-m embers-business"
catchline="Priv ate Mem bers' Bus in ess">
<title>Private Members' Bus iness</title>
<floor-language language=" en"/>
<timestamp id="t11 05" hour="11" minutes="05"/>
<subject id="s 000 1"><title>International Circ ump olar Community</title> <content id="c0001 "> <motion id="m 000 1">
<person-s pe aking>Mr. Lali berte (Churc hill Riv er, NDP)</pers on-speak ing>

- Attributes

- An Attribute is a property which can be associated with an Element
- An Attribute allows the occurrence of one element to be distinguished from another
- Examples of the role that attributes can play in a document instance (depending on the application):
<title tocentry="y"> (flags the title to appear in TOC)

(indicates a graphic to be retrieved)

Attribute Declarations

```
Attribute Types
aXML allows for only certain altributety pes
- CDATA - Character Data (string)
- NMT OKEN - single name to ken
- NMT OKENS - a series of name to kens
ID - Identifier value (unique within an instance)
IDREF - Identifier Refe rence
IDREFS - se ries of Identifier References
- NOTATION - a selection from Notation Names
- ENUMERATION - a selection from group of NMTOKENS
- ENTITY - Entity reference
- ENTITIES - a series of Entity references
```

- \#REQUIRE D - The Attribute must be specified. No action will be regar dless of what may be added to the instance

Attributes
Special Case: ID / IDREF

\square Attributes can be used to identify an Element and then establish a reference to the Element

The ID Value will be validated as unique within the document instance in which it occurs

- The IDREF Value will be validated as an existing ID Value on an Element within the same document instance

Attributes
Special Case: Entity Reference

- Attributes can identify the name of an entity whose content is to be processed at the point where the entity ref erence is made
<graphic boardno ="Z00909B" / >

When the attribute type is declared as an Entity Reference, then the name included as the attribute value will be valid ated as a declared entity
<!ENTTY Z00909B SYSTEM "Z00909B.tif" NDATA tiff>

-Entities are classified into

```
- Internal (entity value provided in the DTD)
- External (e ntity value is stored outside DTD)
- There are two types of Entities
- Parameter (used in the DTD)
- General (used in a Document Instance)
- Entities are also either
- Parsed (contents treated as replacement text)
- Unparsed (no n-X ML data handled as per a NOTATION)
```

- are used to refe rence separate files
- XML data (parsed)
- Non-XM L data (unparsed)
- are used to enter special characters that cannot be keyed in on a keyboard

Entity Definitions
 Defining the content of an entity

- The content of an entity can be:
- an entity value pro vided in the entity declaration in the DTD (internal)
In the DTD: <!ENTITY in "Locking Hardware">
In the Instance: <step>Remove \& lh;</step>
Becomes: <step>Remove Locking Hardware</step>
- an identifier that "points to" the entity content (external):

SYSTEM Identifier:
<!ENTITY logo SYSTEM "http://www.xiacor p.com/lo go.gif">
PUBLIC Identifier (always followed by SYSTEM identifier):
<!ENTITY notice PUBLIC "-//XIACORP//TEXT Notice//EN" "http://www. xiaco rp.com/notice.txt" >

[^0]

Summary

$\square \mathrm{XML}$

- A World Wide Web Consortium Recommendation
- An application profile, or restricted form, of SGML, the Standard Generalized Markup Language
- Provides the benefits of SGML to Web applications in a manner that is simple to implement
- Is extensible (like SGML) and pro vides the mechanisms whereby users define their o wn markup languages

-XML Linking Language (XLink)
- Candid ate Rec ommend ation July 3, 2000
- XLink allows elements to be ins erted into doc uments to describe relations hips between res ources and sub-re sourc es
- Replacing the humble uni-directional anc hor tag <a hr ef="">
- XLinks will implement:
- bi-dir ectio nal link
link metadata
- link be hav iour
out-of-line links
that can be managed independently
<my:crossReference xmlns:my="http://example.com/" xmins:xlink="http://www. w3.or g/1999/xlink" xlink:type="simple" xlink:href="students.xml" xlink:title="Student List" xlink:actuate="onRequest"> Current List of Students </my:crossReference>

XPath XML Implementation Components - XML Path Language (XPath) - W3C Rec ommendation dated Novem ber 16, 1999 - A foundat ion Ianguage for address ing parts of an XML Docum ent - Deve loped for comm on use within bot h XSLT and XP oint er - XPath uses a compact non-XML syntax suitable for use wit hin URIs and XML Attribute Values Provides mechanism to identify a spec ific doc ument com ponent through a loc ation path and a boolean or value bas ed test child: :* seleds all elemert children of the cortext node child::para[position()=las()] seleds the last parachild of the context node child: :para[position()=last()-1] seleds the last but one para child d the cortext node

XPointer

XML Implementation Components

-XML Pointer Language (XPointer)

- Candidate Rec ommendation dated J une 7, 2000
- An extens ion to the Uniform Resource Identifier (URI) reference
- Extends refer enc ing into "sub-r eso urces" (e.g. fragm ents)
- To provide an addr essing method that operates without a need for a physic al target ident ifier ex isting on the sub-res ource
- Based and Extends the XPath Recommendation adding: - points and ranges to be addressed as well as nodes - information location using string matching
- addr essing expr essions to be used in URIs as frag ment identifiers

XQuery

XML Implementation Components

-XML Query language

- Requirements Working Dr aft August 15, 2000
- Data Model Work ing Dr aft May 11, 2000
- The objective is the dev elopment of a data model for XML Docum ents, a set of query operat ors, and a query Ianguage based on those operators.
- Sets of XML Docum ents wo uld be queried like a dat abase
- Results would be extracted and retur ned for processing
- Queries could be iss ued against relational databases with results retur ned in XML for proc essing

XML Schema

XML Implementation Components

aXML Schema (Structures and Datatypes)

- Working Draft Status April 7, 2000
- Schema Structures (Part 1) defines an "instance-bas ed" method for describing doc ument structur es and content
- Schema Datatypes (Part 2) defines an "instance-based" method for defining the datatypes that can exist in XML doc uments
<Elemert Type name = "primaryKey" contert = "etOnly" order = "seq">
<AttributeType name = "name" dt:type= "string" required = "yes"/s
<AttributeType name = "linkName" dt:type = "id" required = "yes"/>
<AtributeType name = "enabled" dt:type = "enumeration" d:values= "yes no" required = "yes"/>
<atributetype = "name"/>
<atributetype = "linkName"
<dtribute type = "enabled"/>
<elemert type = "columnLink" minOccurs = "1" maxOccurs= "*1/> </ElementType

-XML Namespaces

- A W3C Recomm endation dat ed January 14, 1999
- "An XML nam esp ace is a collection of names, identified by a URI reference, which are us ed in XML doc uments as ele ment types and attribute nam es" W3C
- Intended to all ow data from different sources, which may have identical names but follow differ ent rules, to be mixed together
- Allows element instances to declare the ir "par ent" markup languages (voc abular ies)

DTD Creation Tools

- Applications designed to helpDTD Developers
- Offer a graphical view of aDTD and provide analytical reports (e.g. attribute usage) - Examples:
- Near \& Far - OpenText Corporation
- View, create and edit DTDs graphically
- XML Version
- XML / SGML Version

XML Autho rity - Extensibility

- Schema Central - X ML Solutions
- Schema M anagem ent and Conversion
- Document Architect - ArborText Inc.

XML Editors

- Examples

- XMetaL 2.0-Soft Quad

EPIC (ADEPT Editor) - ArborText
Documentor 2.4 - Exosoft
EditTime 3.0 - TimeLux
XMLSpy 3.0 - Icon Inf ormation Systems
Xeena 1.2 - IB M Alphawo rks
Mo rphon (Beta) - Lunatech Research

- XML Notepad - Microsoft
- GRIF Editor - Inf rastructures for Inform ation (I4I)
- QuickSilver - Broad vision (Interleaf)
- XMLPro-Vervet_Logic

Parsers

- Examples

- Omni Mark - Omni Mark Technologies
- Mark-it - Sema Group
- NSGMLS / SP / XP - Public Domain (James Clark)
- Microsoft X ML Parser - Microsoft
- JAXP (Java) - Sun Micros ystems
- Oracle XML Parser (Oracle 8i r3) - Oracle
- Xerces (validating) - Apache X ML P roject
- IBMXML Parser for C (based on Xerces) - IB M
- IBM X ML Parser for Java (validating) - IB M
- Man y more: mostly non-validating

- Examples:

- BladeRunner/Information Manager -Broadvision (Interleaf)
- Astoria - Chrystal Software
- Parlance Content Management - X yEnterp rise
- Poet Content Manager-Poet Software
- Tamino - Software A G
- WorkS MART - OpenText Corporation
- Engenda / DynaBase - eBT
- V/5 Content Management Server - Vignette
- 4i Content Management - Documentum
- Expressroom - Worldweb.net
- XML Canon - Extensibility (Beta)

K1人

The XML
Data Type
Application Lo gic can be applied to
XML
XML can also be used to describe or
declare paramet ers for application Iogic

※1^			-1
		W는	micate
		Hivi	\square
		84.	etr
The XML Data Type		XW-	Waide
		8 Cl	12x
In complex systems XML can play a role at each level		Ltymin	
		401.	chitic
			8
The Modern Reality: Complex Systems are always loosely coupled		0 CH	martit
		-	
		8×1	2640
XML: The WD40 or Duct Tape of System Integration		Timber	
		82	Hetix
		4	IET
			w

XML can be used to define the message form at for all information exc hanges

This requires that each node has an inter pretation ability

XML in Practice
One Piece in a Larger Puzzle

Rais ing the level of automation
being applied reduces the recur rent work load

For known and repe ated interchanges Applications Components are implem ented to han dle the full trans action

SVG

-Scalable Vector Graphics

- W3C Candidate Recommend ation No vember 2, 2000
- A language for describing 2-dimensional graphics in XML
- vector graphic shapes, images and text (XML)
- graphics animation
<?xml version="1.0" standalone="no"?> <!DOCTYPE svg SYSTEM "http://www.w3.org/TR/2000/CR-SVG200011 02/DTD/sv g-2000 1102.dtd">

<svg width=" 5 cm " height=" 5 cm ">
<desc> Two groups, each of two rectangles</desc> <g id="group 1" style="fill:r ed">
<rect \(x=" 1 \mathrm{~cm}\) " \(y=" 1 \mathrm{~cm}\) " width=" 1 cm " height="1cm" /> <rect \(\mathrm{x}=\) " 3 cm " \(\mathrm{y}=\) " 1 cm " width \(=\) " 1 cm " height="1 \(\mathrm{cm} " /></ \mathrm{g}>\) </svg>

\times Knowledge Management

[^0]: ※1 人

 ## Using Notations and Entities
 Enabling Multimedia

 ## - Example

 <? XML version="1.0" encoding="UTF-8" ? >
 <! DOCTYPE doc SYSTEM "doc.dtd"[
 <! ENTTY fig1 SYSTEM "fig1.tif" NDATA tiff>]> <doc>...
 <graphic boardno ="fig1"/>
 </doc>

 In the DTD:
 <! NOTATION tiff SYSTEM "../rasterview.e xe">

