
A Third Way: The Hierarchical /
Streaming XML Parsing Model

Christophe Chardonnet
Technical Consultant, OmniMark

2

Outline

• Introduction
– DOM, SAX, OmniMark
– Event-based vs hierarchy-based parsing
– Streaming programming model

• Practical example
– XML to HTML conversion
– Element rules
– Dealing with attributes
– Reordering data

3

Outline

– Querying the element context
– Dealing with entities
– Handling errors
– Validation

• Demo
• Conclusion

Introduction

5

XML parsing models

• DOM
– tree-based parsing

• SAX
– event-based parsing

• OmniMark
– hierarchy-based parsing

6

OmniMark programming language

• XML and text programming language
– filters, batch conversions
– CGI, servers

• Streaming programming model
• Rule-based program structure
• Integrated XML and SGML parsers

7

SAX parsing model

• Beginning of an element
– one event

• End of the element
– one separate event

8

OmniMark parsing model

• Occurrence of an element
– single event
– fires a single rule

• Elements can contain nested elements
– hierarchy of fired rules
– exact model of the hierarchy of the document

9

Streaming model

• Data is streamed from a source
• Working process as it flows
• Data streams directly to output
• No buffering of input or output

Technical application

11

XML to HTML conversion

• Illustration of the hierarchy-based model
• XML instance as input
• HTML as output

12

XML document
<memo>

<header>

<from>Barney Rubble</from>

<to>Fred Flintstone & Dino</to>

<sent>

<date year="2000" month="09" day="13"/>

</sent>

<subject>Water Buffalo Bowling League standings</subject>

</header>

<body>

<p>These are the current standings in the Loyal Order of Water
Buffalos bowling league.

</p>

<standings>

<team>

<team-name>Bedrock Sand and Gravel</team-name>

<members>

<person>Fred Flintstone</person>...

13

HTML output

14

Initiate XML parsing

• OmniMark is rule-based
– Program execution begins in a process rule

• Initiate the parsing of an XML document
– do xml-parse ...

do xml-parse instance scan file ‘doc.xml’

output ‘<HTML>%c</HTML>’

done

15

XML parsing

• Parsing occurs at the “%c” in a string
• Part before “%c” is output before the parsing:

<HTML>

• Part after “%c” is output after the parsing:
</HTML>

16

“memo” element

• Rule-based
• Root element in XML document is “memo”

– write a “memo” element rule

element “memo”

output “<BODY>%n<H1>MEMO</H1>%n%c</BODY>”

17

“memo” element

• “memo” element of XML document
corresponds to the “BODY” element of HTML
<BODY> and </BODY> tags around “%c”

• output H1 title for the memo
• “%n” is a linefeed
• stack of element rules is starting to build

18

“header” element

• At the "%c", parser resumes parsing
• “header” element rule is fired

element “header”

output “<table>%c</table>”

19

“header” element

• Wrapper tags for a table to present the
memo header info

• Another call to “%c” fires up the parser again
– another rule is fired

element “from”

output
“<tr><td>From:</td><td>%c</td>”

20

“from” element

• Program has now three-deep element stack
(memo, header, from)

• OmniMark doesn’t parse the whole document
before processing it

• Part of the output is already generated
• This is the streaming approach to XML

processing

21

Streamed data content

• “from” element doesn’t contain any other
elements, only data content

• “%c” streams the data content to the
program’s current output
<tr><td>From:</td><td>data content</td>

• When parsing of “from” element is finished,
element rule is allowed to finish, popping one
level off the element rule stack.

22

Attributes

• “date” element contains attributes
• Attributes are collected into an associative

array (shelf)
• Access values using the attribute

keyword or “%v” escape sequence
element “date”

output “<tr><td>Date:</td><td>”

|| “%v(day)/%v(month)/%v(year)%c</td>”

23

Reordering Data

• DOM (tree-based) allows access to any part
of the document
– whole document must be in memory

• OmniMark provides a mechanism for
reordering data: referents

24

Referents syntax

• Write out a referent instead of a string
output referent referent-name

output referent “subject”

• At some time during processing, bind the referent to
a string value

set referent referent-name to StringValue

set referent “subject” to “%c”

• Two separate actions
– You can set a referent and not output it, and you can output

a referent and not set it

25

“subject” element

• Output the subject in the title of the HTML
page

do xml-parse ...

output ‘<HTML><HEAD><TITLE>’

|| referent "subject"

|| ‘</TITLE></HEAD>%c</HTML>’

done

26

“subject” element

• Set the referent in the element rule

element “subject”

output “<tr><td>Subject:</td><td>”

|| referent “subject”

|| “</td>”

set referent “subject” to “%c”

27

Querying the Element Context

• OmniMark maintains the context of the
current element through the hierarchical stack
of element rules

• Let ’s put "td" tags around team names
("team-name" element) in the standings
table, not in plain text

28

Querying the Element Context

• Use element tests (parent, ancestor, open
element…)

element “team-name” when ancestor is “standings”

output “<td>%c</td>”

element “team-name” when ancestor isnt “standings”

output “%c”

29

Dealing with Entities

• Markup characters "<" ">" and "&" must be
escaped with text entities "<" ">" and
"&".

• Need to find these characters in the data
content and replace them
– "translate" rules

30

Dealing with Entities

• Translate rules on data content

translate "<"

output "<"

translate ">"

output ">"

translate "&"

output "&"

31

Handling Errors

• OmniMark validates as it parses
• If it finds an error in the XML stream, it fires a

"markup-error" rule

markup-error

put #error "Markup error: "

|| #message || " on line "

|| "d" % #line-number || ".%n"

32

Validation

• Validation against a DTD
• From well-formed to validating parsing by

changing:
do xml-parse instance scan file ‘doc.xml’

into
do xml-parse instance scan file ‘doc.xml’

• "document" keyword activates DTD validation

33

Demo

• Let ’s run this code

34

Hierarchy Model: conclusion

• Easy-to-use processing model
– scalable

• Information on the current context is easy to
access

• High performance for big documents
– minimise data copying
– minimise memory usage

35

Hierarchy Model: conclusion

• Coding is simplified
– less variable

• "process-oriented"
– code tends to describe the process the program

implements in a way that ’s clear and easy to read

Questions ?

