
Emerging XML Standards for e-Business:
UDDI, ebXML and the W3C

John Ibbotson
XML Technology and Messaging

IBM

Agenda
! Who Needs Standards ?
! W3C and the Core Technologies
! ebXML and EDI Convergence
! UDDI and Web Services
! Summary and Questions

The Road to Interoperability
! Vendors developed proprietary

solutions.

! Customers needed systems to be
connected or realized that no one
vendor supplied everything they
need.

! Vendors reluctantly decided to
work together.

! Integration became a business.

! Vendors decided that standards
should be part of the business
model.

What does this mean for data ?
! Data has to be able to flow

! between different applications
! using different programming environments
! on different hardware
! running different operating systems
! using different communication protocols.

! XML can help you do this.

! A bit of extra work is needed.

Key Web Technologies
! The web has been built on technologies such as

TCP/IP, http, HTML, Java, most of them open
standards.

"The worst in our industry - the elements we must leave behind - is
the mentality that seeks to own standards, and establish choke
holds based on proprietary technology. Let’s remind ourselves
that the spark that ignited the Internet revolution was not
technology. It was an agreement to industry open standards.
We have to make sure the underlying information technologies
are free of closed, proprietary standards."

- Lou Gerstner, TeleCom '99

XML and Standards
! We used to say that XML brings data to the

web, adding the necessary component for 90%
of e-business applications.

We need more than Data
! What are we doing with XML for e-business?

message
envelopes

security

trading partner
agreements

web service
descriptions

business process
modeling

vertical industry
message content

workflow

cross-industry reusable
components

Co-opetition: Friend or Foe ?

! Why would companies
work together when they are
competing for the same
customers?

! IBM’s philosophy is that we will cooperate on
standards development but we will compete
(aggressively) on products.

! Alliances shift from time to time and vary by
standardization effort.

What is the Motivation ?
! Get more companies involved in global e-business.

! Decrease procurement costs and become more
efficient organizations.

! Manage the growth of B2B early.

! Increase potential trading
partners by being able to find
them and then using the same
commerce protocols.

! Move from expensive older e-commerce
technologies to newer ones that take advantage of
the Internet.

Is EDI Dying ?
! Large companies don’t believe so.

! Outside the Fortune 1000, only about 5% of the
small- and medium-sized enterprises have signed up.

! “EDI” comes in several cross-industry and vertical
industry flavors.

! The rigidity of the message sets, expensive
transactions, and slow standardization processes
make a bad or incomplete fit for the fast-changing
Internet business world.

Is XML the Salvation ?
! Companies such as Ariba and Commerce One are

using XML to create new e-commerce solutions and
marketplaces.

! XML specifications are being developed in many
industries.

! Some industries are “re-inventing the wheel” when
it comes to B2B XML
infrastructure, rather than
concentrating on what they
understand best.

Many forms of Standardisation

The Standards Stack

Core XML Technologies

Cross Industry Standards

Industry Domain Standards

World Wide Web Consortium

W3C XML Technologies
! "Recommended" by W3C:

! XML Specification 1.0: syntax, DTDs
! DOM Specification 1.0 & 2.0: Document Model
! XSLT Specification 1.0: transforming XML
! XPath Specification 1.0: queries, addressing XML docs
! XHTML Specification 1.0: HTML in XML form

! Works in progress:
! XML Schema: big improvements over DTDs
! XSL Formatting Objects
! DOM 3.0
! XML Query: a more powerful query mechanism
! XPointer, XLink

! Other standards:
! SAX 2.0 (defacto standard, not from W3C)
! SOAP (proposed standard)

XML 1.0 Specification
! Originally published: February 1998
! In about 35 pages:

! XML syntax details
! Document Type Definition (DTD)

! XML 1.0 Specification, Second Edition
! errata applied to original spec, not a new version
! now a "recommendation" (replaces Feb 1998 edition)
! http://www.w3.org/TR/2000/REC-xml-20001006

! Supplementary specs:
! Namespaces in XML (January, 1999)
! Stylesheet linking (June, 1999)
! others in progress (XBase, XInclude, Canonical, ...):
! see http://www.w3.org/XML/Activity.html#future

XML Schema Specifications
! A greatly improved vocabulary definition language

! Replaces DTDs (superset of DTDs)
! XML syntax
! Rich type support

! W3C Working Drafts: http://www.w3.org/XML/Schema
! XML Schema Part 0: Primer
! XML Schema Part 1: Structures
! XML Schema Part 2: Datatypes

! Almost W3C Candidate Recommendation
! 90-95% implemented in Xerces-Java

! xml.apache.com, XML4J on www.alphaworks.ibm.com

DOM 1.0 Specification
! Models a tree representation of an XML document

! Tree is created as a result of parsing a document
! Supports both XML and HTML

! A language-independent object definition and API
! Bindings for Java in Appendix

! DOM 1.0 W3C Recommendation: October, 1998
! spec: http://www.w3.org/TR/REC-DOM-Level-1/

! DOM 2.0 recently became a W3C Recommendation
! New methods, types, interfaces
! Traversals, namespaces, event model, stylesheets

! DOM 3.0 is currently a Working Draft

SAX 2.0 Specification
! A de-facto "standard" by Dave Megginson

! Not from W3C
! A free API for event-based XML parsing

! Instead of getting a complete DOM tree, you get
notifications of the arrival of each piece

! Essential when parsing very large documents
! Available for Java, C++, COM, Perl, Python
! Version 1.0 published May, 1998
! Version 2.0 published May, 2000
! SAX 2.0 support is available in Xerces parser
! See http://www.megginson.com/SAX/index.html

XSL: Extensible Stylesheet Language

" See http://www.w3.org/Style/XSL/

" Three parts:
XSL

XSLT

Transformation
language

XPath

Formatting
Objects

an XML Vocabulary
for specifying
formatting semantics

a language for addressing
parts of an XML document

XSLT 1.0 Specification
! A transformation language for XML documents

! Styling (rendering to visual form, like HTML)
! Transformation (vocabulary translation)
! Can emit XML, HTML, even non-XML formats

! XSLT documents are well-formed XML
! W3C Recommendation: November, 1999

! Spec: http://www.w3.org/TR/xslt
! XSLT 1.0 implementations

! Apache Xalan xml.apache.org
! LotusXSL www.ibm.alphaworks.com

! XSLT 1.1 and 2.0 are planned

XSL Formatting Objects
! Layout-oriented XML vocabulary

! Rich representation of documents for printing, various
device screens, etc

! Usually created as output of XSLT
! Using an appropriate stylesheet

! XSL Specification defines FO's, refers to XSLT
! Currently W3C Working Draft, last call
! Coming soon: W3C Candidate Recommendation
! See http://www.w3.org/TR/xsl/

! FOP open source FO processor implementation
(creates PDF) available at xml.apache.org

XPATH 1.0 Specification
! Language for addressing parts of an XML document

! Used by XSLT and XPointer
! Basic facilities for manipulation of strings, numbers and

booleans
! Can be used as simple query language
! Compact, non-XML syntax for use in URIs

! W3C Recommendation: November, 1999
! See http://www.w3.org/TR/xpath

! XPath 2.0 is planned
! XPath implementation: part of Xalan / LotusXSL,

xml.apache.org / www.alphaworks.ibm.com

XML Query Specification
! Query facilities to extract data from real and virtual

XML documents
! Relatively new, work in progress:
! Requirements: http://www.w3.org/TR/xmlquery-req

! Data model: W3C Working Draft: May, 2000
! Spec: http://www.w3.org/TR/query-datamodel/

! Query operators: not yet available
! Query language(s): not yet available

! May be two: one for human use, another in XML syntax

XLink Specification
! XML elements for links between documents

! Simple links similar to HTML hypertext links
! Supports more sophisticated links

! W3C Candidate Recommendation: July, 2000
! See http://www.w3.org/TR/2000/CR-xlink-20000703/

XPointer Specification
! Fragment indentifier for URI references that locates

XML resources
! Based on XPath
! Allows for examination of internal document structure and

choice based on content
! Address points and ranges as well as whole nodes
! Locate information by string matching

! W3C Candidate Recommendation: June, 2000
! See http://www.w3.org/TR/2000/CR-xptr-20000607.html

XHTML 1.0 Specification
! Reformulation of HTML 4.01 as XML

! Documents must be "well-formed" XML
! Elements and attributes are lower-case only
! For non-empty elements, end tags are required
! Empty elements (
) allowed
! Attribute values must always be quoted
! No attribute "minimization"

! W3C Recommendation: January 2000
! Spec: http://www.w3.org/TR/xhtml1/

VoiceXML
! Designed for creating audio dialogs that feature

! Synthesized speech, digitized audio
! Recognition of spoken and DTMF key input
! Recording of spoken input
! Telephony
! Mixed-initiative conversations
! ...to make Internet content and information accessible via voice

and phone
! VoiceXML Forum is an industry organization founded by AT&T,

IBM, Lucent and Motorola
! Submitted for consideration by W3C as standard

! See http://www.w3.org/TR/voicexml/
! Some tools available on www.alphaworks.ibm.com

Simple Object Access Protocol
! SOAP 1.0: Userland, Microsoft, DevelopMentor

! SOAP 1.0 was specific to COM and HTTP
! SOAP 1.1 (April 26, 2000) - includes

contributions from IBM and Lotus
! substitutable Transport bindings (not just HTTP)
! substitutable Language bindings (e.g. Java)
! substitutable Data encodings (pluggable)
! completely vendor-neutral
! independent of: programming language, object

model, operating system, or platform

message

envelope
SOAP

SOAP Message Structure
! One way message
! Pattern for request/response

! Invoke a method on a remote object or service
! Return the result of running the method

! SOAP defines an “envelope”
! "envelope" wraps the message itself
! message is a different vocabulary
! namespace prefix is used to distinguish

! Application specific vocabulary
! SOAP Envelope vocabulary

SOAP Request Message
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://{soaporg}/envelope/"

SOAP-ENV:encodingStyle=

"http://{soaporg}/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope> SOAP Envelope

Message

SOAP Request Message
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://{soaporg}/envelope/"

SOAP-ENV:encodingStyle=

"http://{soaporg}/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI“ >

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Message
Namespace

SOAP Envelope
Namespace

SOAP Request Message
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://{soaporg}/envelope/"

SOAP-ENV:encodingStyle=

"http://{soaporg}/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI“ >

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Data model
And

Parameter encoding

SOAP Response Message
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://{soaporg}/envelope/"

SOAP-ENV:encodingStyle=

"http://{soaporg}/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Result returned
In Body

SOAP hides the Service
implementation from the Requestor

standard XML request/response
messages

•SOAP envelope

•industry-specific

•message content

Service
Provider
Service
Provider

?

SOAP
Server

HTTP
Server

Service Requester

EJB ? CORBA ? COBOL ?

Apache SOAP 2.0
! SOAP4J posted to IBM alphaWorks, April 2000
! Contributed by IBM to the Apache Software

Foundation, June 2000
! SOAP4J from Apache:

! Solid SOAP v1.1 implementation,
supporting HTTP and SMTP protocols

! Platform-independent Java
! Free download from xml.apache.org with source
! Under development by IBM and others

! SOAP distribution includes:
! User's Guide
! API documentation
! Debugging tool
! Samples

SOAP and Standardisation
! SOAP was submitted to W3C for consideration as a

standard (summer 2000)
! W3C "XML Protocol" activity: Sept 13, 2000

! work is done in public
! http://www.w3.org/2000/xp/Group/
! drafts available: requirements, definitions
! chair: David Fallside, IBM
! Web Services workshop scheduled for April 2001

! Considering SOAP as input to the process, not simply a
rubberstamp of SOAP spec

! Industry-specific XMLP messages will start a new
round of vocabulary standards work

W3C Summary
! W3C is the home for XML technology

standards
! XML Schema an important standard

! Still undergoing standards process
! Some concern over its complexity

! XML Protocol is WG for SOAP
! Expect other XMLP associated standards

ebXML

Origins of ebXML

United Nations Centre for the
Facilitation of Procedures and
Practices for Administration,
Commerce and Transport

Organisation for the
Advancement of Structured
Information Standards

XML EDI

The need for ebXML
! ebXML is the joint OASIS - United Nations/ CEFACT “Electronic

Business XML initiative.”
! A primary objective of ebXML is to lower the barrier of entry to

electronic business in order to facilitate trade, particularly with
respect to small- and medium-sized enterprises (SMEs) and
developing nations.

! Many vertical efforts are re-inventing infrastructure and not
focused completely on the industry vocabulary

ebXML Vision
! "A single set of internationally agreed

upon technical specifications that
consist of common XML semantics and
related document structures to facilitate
global trade."

ebXML Operation
! The project lasts 18 months, starting in

November, 1999. Ending May 2001

! A key aspect for the success of the ebXML
initiative is adherence to the use of the W3C
suite of XML and related Web technical
specifications to the maximum extent
practical.

! Technologies will also be borrowed from
other consortiums, as appropriate.

ebXML Objectives
! To maximize interoperability and efficiency

while providing a transition path from
accredited electronic data interchange (EDI)
standards and developing XML business
standards, and

! To be submitted to an appropriate
internationally recognized standards body for
accreditation as an international standard.

ebXML Organization

Requirements
Team

Registry and
Repository

Business
Process

Transport
Routing and
Packaging

Core
Components

Trading
Partner

User Community
Business and Technical

Requirements Steering
Committee

Executive
Committee

Marketing

Proof of
Concept

Requirements
Architecture

Quality
Review

Project
Management

Security

Requirements WG - 1
! Purpose is

! To provide clearly articulated requirements
from representatives of international
business and accredited standards
organizations to assist the ebXML project
team members in developing their
deliverables in a consistent manner, and

! To convey to interested parties the
purpose, scope, and vision of ebXML.

Requirements WG - 2
! The business requirements to be addressed

by the ebXML initiative are divided into nine
core areas
! General Business,
! Electronic Business,
! Globalization,
! Openness,
! Usability/Interoperability,
! Security,
! Legal,
! Digital Signature, and
! Organizational.

ebXML Architecture

Transport

Package

Business
Service

Interface

Business
Service

Interface

Internal
Business App

Shrink-wrap
Application

Repository

Implementers

Business Process and Information Models

Build

Registration

TPA

UML to XML conversion

Retrieval of ebXML
Specifications & Models

Build

Retrieval of new or
updated ebXML Models

Retrieval of new or
updated ebXML Models

Transport, Routing and Packaging - 1

! Specify how to envelope business documents
in regard to
! related messages in a collection
! physical and/or logical addressing of destination

for messages
! Specify exchange at the application level
! Provide for flexible transaction boundaries
! Provide for reliable messaging and error

handling

Transport, Routing and Packaging - 2

! Identify messaging routing
! Meet security requirements
! Provide for audit trails
! Define and meet acceptable levels of quality

of service
! Support platform independent interoperability
! Support restart and recovery
! Convergence with SOAP

! Decision at Vancouver Plenary – February 2001

TRP Message Structure
Communication Protocol (SMTP, HTTP, etc.)

MIME multipart/related

SOAP-ENV:Envelope

/SOAP-ENV:Envelope

SOAP-ENV:Header
eb:MessageHeader
eb:TraceRoute
ds:Signature

/SOAP-ENV:Header

SOAP-ENV:Body
eb:Manifest
eb:StatusData
SOAP-Env:Fault

eb:ErrorList
/SOAP-Env:Fault
eb:Acknowledgements

/SOAP-ENV:Body

Payload

Payload

Business Process WG
! An opportunity to re-engineer using Internet

technologies
! Model “vertical” business processes using a

common methodology
! UML based
! Reusable templates in repository

! Map models to XML for implementation
! Generate partner profiles
! Provide security profiles

Core Components WG
! Analysis and Discovery processes

! Use to create a catalogue of existing components
! Domain experts analyse their industry
! Components assessed to eliminate overlap

! Propose methodology for core component development
! Naming conventions
! Contexts for re-usability
! Application of assembly and context rules

! Components available via Registry/Repository

Registry/Repository WG
! Define an ebXML Registry and associated Information model

which will allow:
! Discovery of trading partners and their profiles
! Discovery of business process capabilities and

communications specifications
! Discovery of data interchange specifications used within the

context of a business process
! Retrieval of software component adapters to integrate

information into business applications
! Development of business process models
! Discovery of core business objects and core components

Trading Partner WG
! Rules of interaction between independent businesses

! Independent of internal business processes

! An XML Document
! Partner Profile lists what a partner CAN do – their IT capabilities

! Communication protocols
! Security requirements
! Business processes they support

! Partner Agreement lists what partners WILL do
! An intersection of two partner profiles
! With some negotiation

! Allows automatic generation of implementation at each party
! Formal specification avoids misinterpretation
! Assures each party configured compatibly

Security WG
! Provide a consolidated security model across ebXML

! Policies
! Privacy, non-repudiation, audit, …..

! Technology
! S/MIME DSIG, XML DSIG, S/MIME encryption, https …..

! Define security responsibilities for ebXML WGs
! TP define security elements for partner profiles
! BP/CC express security roles and policies
! TRP support security technologies in partner profile
! RR provide appropriate policies for access …..

Proof of Concept WG
! Assess the viability of ebXML

specifications by demonstration and
implementation

! “Marketing” role for ebXML
! Feedback to technical WGs

! What does and doesn’t work
! Specification refinement

Other WGs
! Technical Architecture
! Marketing and Awareness
! Quality Review

ebXML Summary
! ebXML successfully generating XML

based specifications for e-business
! Migrating EDI community to XML
! Completion by May 2001
! ebXML will continue to a second phase

! As of February 2001, the format has not
been finalised

Links
! ebXML

http://www.ebxml.org
! OASIS

http://www.oasis-open.org
! UN/CEFACT

http://www.unece.org/cefact
! XML.org

http://www.xml.org

UDDI and Web Services

What is UDDI ?
! Universal

Description,
Discovery, and
Integration

! A project to speed interoperability and
adoption for web services
! Standards-based specifications for service

description and discovery
! Shared operation of a web-based business registry
! Partnership among industry and business leaders -

more than 200 companies have signed up so far

What problems does UDDI solve ?

Broader
B2B

Smarter
Search

Easier
Aggregation

A mid-sized manufacturer
needs to create 400 online
relationships with
customers, each with their
own set of standard and
protocols

A flower shop in Australia
wants to be “plugged in” to
every marketplace in the
world, but doesn’t know how

A B2B marketplace cannot
get catalog data for relevant
suppliers in its industry,
along with connections to
shippers, insurers, etc.

Describe
Services

Discover
Services

Integrate
them
Together

UDDI Vision and Process
1. Start with existing standards

! TCP/IP, HTTP, XML
! Industry-specific schemas
! Shared vision of open protocols

2. Augment and implement via a Web Service
! Common web services “stack”
! Shared implementation to avoid confusing customers
! Public specs, open service, inclusive process

3. Transition to a Standards Body
! Manage design process for 3 revisions

UDDI v1 Implementation

Flower Shops

Marketplaces

UDDI Business Registry
Programmatic descriptions of
web services
Programmatic descriptions of
businesses and the services they
support
Programming model, schema,
and platform agnostic
Uses XML, HTTP, and SOAP
Free on the Internet

Manufacturers

How UDDI v1 works

UDDI Business Registry

Business
Registrations

Service Type
Registrations

UBR assigns a programmatically unique
identifier to each service and business
registration

3.

Businesses populate
the registry with
descriptions of the
services they
support

2.

SW companies,
standards bodies,
and programmers
populate the registry
with descriptions of
different types of
services

1.

Marketplaces, search
engines, and business
apps query the registry
to discover services at
other companies

4.

Business uses this data
to facilitate easier
integration with each
other over the Web

5.

And now …..

Let’s look at Web Services

in more detail

Defining Web Services
Modular applications that can be:
! Described using a service description language. WSDL

(Web Services Description Language).
! Published by registering its description and use policies

with a registry.
! Found by sending queries to that registry and receiving the

binding details of the service(s) that fit the parameters of
the query.

! Bound by using the information contained in the service
description to create a callable service instance or proxy.

! Invoked over a network by using the information
contained in the binding details of the service description.

! Composed with other services into new services.

Conceptual Foundation

Service
Requester

Service
Registry

Service
Provider

Service

Description Client

Find

BindPublish

Web Services Stack

Service Interface Definition

Service QoS

 S
er

vi
ce

 D
is

co
ve

ry

M
an

ag
em

en
t

Se
cu

rit
y

WSDL

WSDL

SOAP

Service Flows

WSDL

Formats & Protocol

Service Impl Definition

 UDDI PKI

UDDI Service Description

Definition of Stack Layers
! Formats and Protocols

Messages are sent as XML documents conformant
to well known or published XML Schemas.

The messaging infrastructure will use W3C XML
Protocol (SOAP until W3C XP available) for the
message envelope and common standard.

Definition of Stack Layers
! Service Interface Definition

! Specification of logical interface
! WSDL provides all IDL capabilities

! Service Implementation Definition
! Defines network location, protocols, security

requirements and other attributes specific to a
particular instance of a service

! WSDL provides this as well

Definition of Stack Layers
! Service Description

! the nonfunctional service description
! Taxonomy, ownership, business name, business

type, and various keywords that make the
discovery easier.

! UDDI provides this capability

Definition of Stack Layers
! Service Discovery

! Dynamic at runtime
! Static – services found and bound to at

development time
! Tools browse/search

! UDDI registry is a services directory
! Contains service definitions
! Programatically searchable

Definition of Stack Layers
! Quality of Service

! Implementation level
! E.g. Transactional, secure

! Interface level
! E.g. Tolerable response times

! Provided by WSDL and potentially other
definitions

! It is possible to extend WSDL with concepts based on
ebXML partner agreements

Definition of Stack Layers
! Service Flows

! Services as activities in work flows
! Flows of services, potentially between

partners
! Services as wrappers for exposed business

processes
! Service composition
! This is an area of study

Registry Contents
Businesses register
public information
about themselves

Standards bodies, programmers,
businesses register information
about their Service Types

White
Pages

Yellow
Pages

Green
Pages

Service Type
Registrations

UDDI, WSDL Relationships

URL ref

tModelbindingTemplatebusinessService

WSDL
Instance Interface

Network
endpoint
information

Details of
accessing
the service

UDDI

UN/SPC
NAICS

DUNS Numbers
Thomas Registry ID

Rosetta-Net
BASDA

Simple.Buy

Schemas,
Interchange specification

Information Model
Web Service

Web Service

businessEntitybusinessEntitybusinessEntity
businessServicebusinessService

bindingTemplatebindingTemplate
InstanceDetailsInstanceDetails

categoryBag
keyedReferencekeyedReference

identifierBag
keyedReferencekeyedReference

tModels

From 500 Feet – Service invocation
! Publishers interface

! Save things
! save_business
! save_service
! save_binding
! save_tModel

! Delete things
! delete_business
! delete_service
! delete_binding
! delete_tModel

! security…
! get_authToken
! discard_authToken

! Inquiry interface
! Find things

! find_business
! find_service
! find_binding
! find_tModel

! Get details
! get_businessDetail
! get_serviceDetail
! get_bindingDetail
! get_tModelDetail

! Taxonomy interface
! validate_categorization

Service topology

Private instances provide
both a layer above the public
UDDI, and private registration for
industry-based or use-based
categorization and for net market
makers.

Selective pointers to
public UDDI data

Pointers to exposed services

Pointers to hosted services
Private UDDI Public UDDI

WSDL references in UDDI
<bindingTemplate>

(...)
<accessPoint urlType="http">

http://example.com/stockquote
</accessPoint>
<tModelnstanceDetails>

<tModelnstanceInfo>
<tModelKey> (...) </tModelKey>
<overviewDoc>

http://example.com/stockquote/stockquote.wsdl
</overviewDoc>
<instanceParms>

<port name="StockQuotePort"
binding="StockQuoteBinding"/>

</instanceParms>
</tModelnstanceInfo>

<tModelnstanceDetails>
</bindingTemplate>

What uses UDDI?
! Tool building client (Service Consumer)

! Browse or search registry
! Create a service proxy

! Tool publishing the service
! Generates WSDL
! Construct UDDI entries

! Application that needs dynamic binding
! Directly access UDDI
! Query can be pre-generated

How is UDDI Accessed?
! UDDI Spec defines the interfaces in terms of

XML messages
! UDDI4J provides Java language mappings
UDDIProxy proxy = new UDDIProxy();
proxy.setInquiryURL("http://www-3.ibm.com/services/uddi/ testregistry/inquiryapi");
proxy.setPublishURL("https://www-3.ibm.com/services/uddi/

testregistry/protect/publishapi");

Publishing a WSDL-defined Service

! WSDL instance information
(implementation: ports, addresses, etc)
converted to UDDI bindingTemplate
elements.

! URL of WSDL interface definition is
stored in overviewURL element of UDDI
tModel.

Binding to a Service
! Done by Web Services runtime/tools

! Create needed WSDL instance information
from bindingTemplate

! Obtain interface WSDL reference from the
tModel

! Construct service proxy

Architectural Components

Requester
App

Service Provider

Web
Service

Web
Service

Web
Service

. . .

Web
Services

Requester
Runtime

Web
Services
Provider
Runtime

UDDI
Registry

Requester

Service Requester Components

Requester
App

Requester

Service
Proxy

Service
Wrapper

SOAP
to Service

Web
Service

Requester
RT

WSDL

SOAP
to UDDI

Provider Components
Web App Server

Service
Impl.

Service
Adapter

Service
Impl.

. . .

Web
Server

Runtime

Service
Impl.

Web Service

Web Service

Web Service

SOAP
Router

SOAP
Router

SOAP
Router

SOAP
Request

Security Scenario - Requester

Web Services
Runtime

Method
Call

Certificates

Method
Arguments

SOAP
Runtime

Message
Body

Certificates

HTTP

Userid/
Password

SOAP
Envelope SSL

Certificates

HTTP
Request

Call
Method

Format
and sign
message
payload

Format
and sign
message
header

Format
HTTP

request

Authenticate
and encrypt
transmission

Security Scenario – Provider

Web Service
Containter

Certificates

SOAP
Runt ime

Message
Body

Certificates

Server HTTP

Userid/
Password

SOAP
EnvelopeSSL

Certificates

HTTP
Request

Incoming
Request

Validate
payload

signature

Validate
header

signature

Validate
incoming

HTTP
request

Authenticate
and decrypt
transmission

Method
A rguments Web Service

Certificates

Management of Web Services
- Basic Concepts

Management
System or
Agent

Managed
Resource

get Identification
get Availability
get Metrics
get Configuration

send event

send response

invoke operation
set configuration

1

1

1

2

2

send response
or affirmation

Management of Web Services - specifics

Example of IBM Web Services Toolkit
! Based on Java Management Extensions
! Metrics, availability and identification,etc.,

handled with out service action
! Management Beans automatically created

! Advanced management functions
! Configuration

! Availability requires explicit support by the service
implementation

Application Development Scenario - 1

Create new Web Service implementing an existing interface
1. Use the UDDI browser to find the service and download WSDL

documents
2. Assuming the SOAP protocol, use the SOAP tools to create a

corresponding SOAP deployment descriptor.
3. Create the classes that implement the service described in the

WSDL documents
4. Use the UDDI editor to create the additional UDDI information
5. Publish service information to a test UDDI server and test
6. Promote service to a production UDDI server

Application Development Scenario - 2

Create new Web Service implementing a new interface
1. Create an Interface
2. Create implementation classes.
3. Use the WSDL generator to derive the WSDL Interface

document from the interface in step 1. Assuming the
SOAP protocol, use the SOAP tools to create a
corresponding SOAP deployment descriptor.

4. Use a WSDL editor to complete the WSDL
implementation document.

5. Use a UDDI editor to create the additional UDDI
information.

6. Publish the service information to a test UDDI server
and test. Promote the service information to a
production UDDI server.

Application Development Scenario - 3

Expose an existing application as a Web Service
1. Use a WSDL generator to derive the WSDL interface

document from an existing application
2. Use a service adapter generator to create the web

service adapter
3. Assuming SOAP, use tools to create a corresponding

SOAP deployment descriptor
4. Publish the service information to a test UDDI server

and test Promote the service information to a
production UDDI server

Service Consumer

WeatherService service = new WeatherService();

String weather = null;
String[] locations = null;
if (location!=null)

weather = service.getWeather(location);
if (state!=null)

locations = service.getLocations(state);

Using Service wrapper, generated by tooling, invoke the service
as a local object.

WSDL Definition of a Service
! WSDL Document contains

! Interface Definition
! Name
! Input message
! Result message

! Specifics of an implementation of that interface
! Transport
! Encoding
! Location

! Any XML types needed to express the interface

Interface Definition
<?xml version="1.0"?>

<definitions name="AddressService"

targetNamespace="urn:show-address“

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/1999/XMLSchema”

xmlns:xsd1="http://www.addressbook.com/ns/ShowAddress"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<message name="AddressInput">

<part name="theAddress" type="xsd1:address"/>

</message>

<portType name="AddressHandler">

<operation name="printAddress">

<input message="AddressInput"/>

</operation>

</portType>

Instance (Interface) Definition
<binding name="AddressSoapBinding" type="AddressHandler">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="printAddress">

<soap:operation soapAction=""/>

<input>

<soap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/

http://www.ibm.com/namespaces/xmi"

namespace="urn:show-address"/>

</input>

</operation>

</binding>

Instance (location) Definition

<service name="AddressService">

<port name="AddressPort" binding="AddressSoapBinding">

<soap:address location="http://localhost:4040/soap/servlet/rpcrouter"/>

</port>

</service>

Reach via SOAP at this location

Data Type Definition
<types>

<xsd:schema targetNamespace="http://www.addressbook.com/ns/ShowAddress"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<xsd:complexType name="address">

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="state" type="xsd:string"/>

<xsd:element name="zip" type="xsd:string"/>

</xsd:complexType>

</xsd:schema>

</types>

</definitions>
Referenced in Interface
Definition

Implementation Example
import java.net.*;

import org.apache.soap.*;

import com.addressbook.www.ns.ShowAddress.*;

public class ShowAddressClient

{

public static void main(String[] argv) throws MalformedURLException, SOAPException

{

if (argv.length != 4)

{

System.err.println("Usage:\n" + " java " + ShowAddressClient.class.getName() +

" street city state zip");

System.exit(1);

}

Address addr = new Address(argv[0], argv[1], argv[2], argv[3]);

AddressHandlerProxy testProxy = new AddressHandlerProxy();

testProxy.printAddress(addr);

}

}

Tooling Support
! Example of Web Services Tooling is the

IBM “XML and Web Services
Development Environment”

! Logical tool components mentioned in
scenarios are provided by this package

! Early version on alphaWorks now

Web Services in a Web App
Server

SOAP
(XP)

Servlet

Java
Class

EJB

EJB
Wrapper

EJB
Wrapper Message Queue/Broker

J2C
JNI

Skeletons

Proxy
Bean SOAP

(XP)

JMS MSG Beans
ORB

Workflow

JavaBean
Servlet …

Operational Topology
Public UDDI Registry

Private UDDI Registry
- enhanced taxonomy
- enhanced search
- replicates selected subset Test UDDI

Registry

App
Server

Web Service

Promote

WSDL

XML Registry

Company A

Relationship to ebXML

B 2C
S im p le
B 2B E D I

S oph is tica ted
In te rne t B 2B

S erv ice
F low

W eb S erv ice s e bX M L

In te rna l
A pps

Technologies are complementary and will both be part of the
evolution of the plumbing for doing business on the web.

For More Information

! UDDI
uddi.org

! IBM developerWorks Web Services Zone
www.ibm.com/webservices

! IBM alphaWorks
www.alphaworks.ibm.com

! W3C XML Protocol
www.w3.org

Summary - 1
! The web owes its existence and success to

standards
! These must be open and robust
! Industry will build on core technologies

! Built on W3C recommendations
! Industry groupings such as UDDI and ebXML will

take advantage of the technologies
! Open Source and Open Standards are

complementary

Summary - 2
! We are moving from a web composed of documents

to a web that also contains business services.
! Web services is a standards-based way to make

applications discoverable and usable on the Internet
(intranet)

! The industry is focusing on UDDI, SOAP, and WSDL
as the foundations of the Web services approach

! Web services are gateways into enterprise
applications

Questions …..
! Contacting me

! John Ibbotson
! Email: john_ibbotson@uk.ibm.com
! Tel: +44 (0)1962 815188

