Tutorial: Designing Custom Template
Processing Languages Using XML

Christophe Chardonnet
Technical Consultant, OmniMark

T

FOWERED BY 1D L == | —

O MNIMARK I
Y E U R O EDITION

"POWERED 8y iy %
O M NA R K

Outline

 Introduction
— Template based approach
— Programming based approach
— Mixed approach: custom template language

 Technical environment
— OmniMark language
— CGI programs
— Server daemons

"POWERED BYIIID AF
O M NA R K

Outline

« Practical example:
— Programming approach
— Template: Basic substitution
— Centralized processing
— Using referents

e CCL: Content Control Language

@—Emniﬂ(

Introduction

ﬁm
O NN TARK

"POWERED 8y iy A
O M NA R K

Why talk about template languages ?

e Because our professional service team has
found them to be an ideal solution in several
mayjor projects

 Because they illustrate the power of the
streaming programming model

"POWERED 8y iy A
O M NA R K

Why talk about template languages ?

 Because they are an effective solution you
probably would not even contemplate In
another language

e Let programmers program and designers
design

"POWERED 8y iy ﬂ
O M NA R K

Building interactive web applications

 Two approaches to building interactive web
applications

— Use page templates with embedded code
« ASP
* Cold Fusion

— Write CGI or servlet programs
 OmniMark

e Perl
e Java

"POWERED 8y iy
O M NA R K

Template based approaches

— Quick and easy to start
— Non-programmers can do a lot of the work

e But:
— Complex operations are difficult to code

— Code base gets scattered all over your web site,
creating maintenance nightmare

"POWERED 8y iy A
O M NA R K

Programming based approaches

— Provide maximum processing power
— Keep your code organized

e But:

— Lack flexibility
— Require programmer intervention to change even

simple elements
» Designers and content providers can't get their work

done
* Programmers are bogged down in boring maintenance

work

= L —¢) W—

Mixed approach

« Build template processing into your
applications

e Give designers and content providers the
flexibility they need, without writing the whole

application in template pages

"POWERED 8y iy %
O M NA R K

Mixed approach

« Keep control over your code base

e Design your template functionality to suit:
— your business practices
— division of responsibilities in your organization
— skill level of your colleagues

@:;mniﬁtérk

Tutorial: Technical environment

POWERED

umml"j”nnu

"POWERED BYIIID %P
O M NA R K

Tutorial: Practical application

e Let’s design some custom template
language

* Use of the OmniMark language

e CGIl or Web daemon programs

@:;mniﬁtérk

OmniMark language

ﬁm- W 1 = I

E U R @ EDITION

umml"j”nnu

"POWERED 8y iy %
O M NA R K

OmniMark language

« XML and text programming language
— filters, batch conversions
— CGl, servers

e Streaming programming model
* Rule-based program structure
* Integrated XML and SGML parsers

"POWERED 8y iy
O M NA R K

Streaming model

« Data is streamed from a source
 Working process as it flows

o Data streams directly to output
« No buffering of input or output

"POWERED 8y iy A
O M NA R K

Rule based

* Program execution begins in a pr ocess rule

* |Invoke the markup processor (XML or SGML)

— do xml-parse ... or do sgml-parse ...
— write el enent rules

— hierarchical streaming parsing model

* Invoke the pattern processor

— submit file ...
— write f 1 nd rules

@:mnirk

CGI programs

POWERED

umml"j”nnu

= .'9#_\,“: = =
ML T , - , . Yy ______
v M=

m @
o f 'ARK

OmniMark CGlI program

“POWERED BY
O MNWWA R K

From browser to browser ...

 Browser accesses a URL that points to a CGIl program

e Server activates the program and uses the CGI
protocol to pass the data sent by the client to the CGI
program

 CGI program acts on the data and does the required
processing

 CGI program returns a response to the web server
using the CGl protocol

 Web server sends the response to the client using
HTTP

"POWERED BYIIID %]F
O M NA R K

HTTP

« Hypertext Transfer Protocol

— Communication standard between browsers and
web servers
— Stateless information retrieval network protocol

— Based on TCP/IP (Transmission Control
Protocol/Internet Protocol) connections

"POWERED 8y iy %
O M NA R K

Common Gateway Interface

« The Common Gateway Interface is a protocol
that allows web servers to communicate with

other programs

— Web server invokes the program and sends input
data to the program

— The program runs and output data is sent to the
web server

"POWERED 8y iy ﬂ
O M NA R K

HTTP communication

e That's the job of the web server!

e But you need to know ...

— How to specify and analyze requests (URL, HTML
forms, decoding data ...) from a browser

— What the web server needs to send to the browser

“POWERED BY
O M NA R K

CGIl communication

 The web server should invoke OmniMark
whenever an OmniMark CGI program is
requested

— Implies setting up the web server
e Passing data is standardized

— Know how web servers pass input data
— Know what web servers expect from CGI

"POWERED 8y iy A
O M NA R K

The browser can request ...

 An OmniMark program directly
— Conventional extension is “ * . xon?

 An OmniMark arguments file
— Conventional extension is “ *. xar”

— Tells where to find the OmniMark program
— Can contain many other options
— |Is the preferred method because it is more flexible

"POWERED 8y iy
O M NA R K

URL

 Uniform Resource Locator

— An address scheme for specifying Internet
resources

http://ww. ormi mar k. com 80/ docs/ i ndex. ht m

e

HTTP protocol Port number

Domain name Resource details
(path and filename)

' PGW.-E‘HED BV:“ %
o FN ﬂ'l""n RK

URL

« URL components
— Protocol: HTTP, FTP, etc
— Domain name: the site on which the server is running
— Port number: port at which the server is listening
— Resource detalils:
o file
e gateway program

"POWERED 5y iy
O M NA R K

URL to invoke a CGl

* |Invoking an OmniMark file
http://ww. omi mar k. com scri pts/ hell o. xom

* Invoking an OmniMark arguments file
http://ww. ormmi mar k. com scri pts/ hel | o. xar

"POWERED 8y iy
O M NA R K

Web server invokes OmniMark because ...

 On UNIX and Linux systems

— The #! directive appears on the first line of the
CGI program and tells the web server where to
find the OmniMark executable:

e OmniMark program
#! [usr/ bi n/ otmmi mar k/ oormi mar k -sb

 OmniMark arguments file
#! [/ usr/ bi n/ ormi mar k/ ormi mar k -f

"POWERED 8y iy
O M NA R K

Web server invokes OmniMark because...

 On Windows operating systems

— Depending on the requested file extension, you
need to set up the web server to invoke a program

— Set up the web server by associating file
extensions with the OmniMark executable:
“.xont = “ommi mark. exe -sbh %"

“.xar” = “omimark.exe -f 9%s”

"POWERED 8y iy %
O M NA R K

Command line

omi mar k is OmniMark C/VM (compiler/ virtual
machine)

-sb program xom
— Run the program “pr ogr am xon¥
-f arg. xar

— Pass parameters through ar g. xar arguments
file. This file contains command-line options
Including
-sb program xom

"POWERED 8y iy ﬂ
O M NA R K

Using OmniMark VM

e You can produce a compiled program from
your source code using OmniMark C, and
use OmniMark VM to invoke it

omi vm -| oad prog. xvc

e That way, your code Is protected

"POWERED 8y iy ﬂ
O M NA R K

Example: setting up IS

|t depends on the version of IS, but for
mine...
— Open the “lIIS Management Console”
— Select “Default Web Site”
— Right-click on “Properties”
— Select “Home Directory” and then “Configuration”

"POWERED 8y iy
O M NA R K

Example: Setting up IS ... continue

e You will see a list of associations between
extensions and executables

e Add one for “*.xom” files
*.xom=omimark -sb %

e Add one for “*.xar” files
*.xar = octmimark -f %

"POWERED 8y iy A
O M NA R K

Directories and virtual directories

« Home directory: Is directly mapped to your
domain name

 Virtual directory: choose a mapping between
a physical directory and an alias name

* Directory permission. read, execute, and
script

' PGWEHED BY
O F,NRVA R K

File and directory permissions

* Invoked file must be in a web server directory with
“script” permissions

« Invoking an arguments file

— Web server must be able to execute and read the
arguments file

— OmniMark program must be readable
e Invoking a program directly

— Web server must be able to execute and read the
OmniMark CGI program

"POWERED 8y iy A
O M NA R K

Giving permissions to a web directory

e By convention the “script” or “cgi” directories
are set up with script permission

e You can choose permissions for each
directory

e Subdirectories inherit permissions

— You can organize different projects in different
directories

"POWERED 8y iy
O M NA R K

Let’s invoke an OmniMark program!

e First OmniMark CGlI program:
#! omi mar k -sb

pr ocess
out put “Content-type:. text/plain”
|| “9%A3#%0#" || *2
|| “Hello you!”

"POWERED 8y iy
O M NA R K

Let’s invoke an arguments file!

 Arguments file hel | 0. xar
#! ommi mar k. exe -f
-sb hel | 0. xom

 OmniMark program hel | 0. xom
process
out put “Content-type:. text/plain”
|| “943#%A0#" || *2
| “Hello you!”

“POWERED BY
O M NA R K

Error messages

 Handling CGI program error messages

— If your program has an error, the result shown in
the browser is not always helpful

— Often displays nothing more than:

“CA@ programreturned an i nconplete set
of HTTP headers”

"POWERED 8y iy
O M NA R K

Using “-log” or “-alog”

e Causes all OmniMark error messages to be written to
the specified file

e Use arguments files!
#! ommi mar k. exe -f

-sb hell 0. xom

-l og d:\inetPub\l ogs\omi\hello.l og

"POWERED 5y iy
O M NA R K

Create arguments files

e You can use the “project files” the IDE
creates
— Save themas “*. xar”

— Modify them to add more options such as the -
| og option

"POWERED 8y iy
O M NA R K

CGl directories organization

« READ access for static pages

« “root” directory for static pages
C. \ I net Pub\ wwwr oot \ cgi cl ass

Access it with

“http://1ocal host/cgiclass/file.htn?

or
“http://127.0.0.1/cgiclass/file.htni

| SCRIPT access for CGl

 “script” directory for “*.xar” files
C.\ I net Pub\ cgi\cgicl ass

e Access it with
http://1ocal host/cgi/cgiclass/file.xar

or
http://127.0.0.1 /cqgi/cgiclass/file.xar

o —C.) S—

Sending output data

* Any data your CGI program sends to
standard output is sent to the browser

e out put “foo” writes“fo0” to
#current - out put which is, by default,
connected to the standard output

"POWERED 8y iy
O M NA R K

Standard output and CGl

e #process- out put should be set to binary-
mode, and can also be unbuffered

decl are #process-out put has binary-node
decl are #process-out put has unbuffered

' PGW.-E‘HED BV:“
o FN ﬂ'l""n RK

What about HTTP?

e The web server should understand data sent
by your program
— Should be HTTP compliant

s}{?‘g‘.-\v
L1 '=> ‘=* ; = omnlmarl(

E. U R -0 EDITJON

' POWEHED BY
o l";'I:N:l!lT'd"l_'A RK

HTTP response

 HTTP header tells the browser how to
Interpret incoming data

* A blank line following the HTTP header tells
the browser that the header is complete

 All other data sent to standard output will be
Interpreted by the browser — this is the data

you want to display

"POWERED 8y iy
O M NA R K

Basic HTTP headers

« HTTP header examples
— Content-type: text/plain
— Content-type: text/htmn
— Content-type: inmage/gif
— Cookies ...

out put “Content-type:. text/plain”
|| “9A3#%0#" ||* 2

| OmniMark CGIl example

decl are #process-out put has binary-node
macro CRLF is “9%43#%0#" nacr o-end

process
out put “Content-type: text/plain”
|| CRLF [[* 2
|| “Hel | o Omi Mark Devel opers!”

s_;,ﬂ"'\\a’
L1 '=> ‘=* ; (== omnlmarl(

E. U R -0 EDITJON

@:;mniﬁtérk

OmniMark service daemons

POWERED

umml"j”nnu

"POWERED 8y iy ﬂ
O M NA R K

CGl request

e Shortcomings:

— Gateway programs are server-side programs that must run
on the same machine as the web server. Therefore, they do
not allow for distributed processing.

— Gateway programs are not scalable — there is a limit on
how many of these programs can run simultaneously

— Gateway programs start and stop each time a new request
arrives

FOWERED EYIID
O M NNA R K

OmniMark service programs
In a web environment

OM

D
server server

SERVER re|ay

API OM weh
T r W .
protocol Omni M ark
— service
omrelay.ini program

\f""m =
= , I: omnlmarl(

E U R EDITJON

' PGWEHED BY
O F,NRVA R K

OmniMark service programs ...

... are server programs listening 24/7 for a request
on a TCP/IP port

 When a request arrives, the server accepts it,
processes it, and sends the response

 OmniMark service program is then ready again to
accept a new request

« Communication (request/response) is compliant
with the OmniMark web protocol

"POWERED 8y iy A
O M NA R K

OmniMark web server relays

 OmniMark web server relays handle communication
between the web server and OmniMark service

programs
— OMCd R for any CGIl-compliant web servers

"POWERED 8y iy
O M NA R K

OmniMark web protocol

« The OmniMark web protocol is a client/server
protocol that describes the mechanism the
OmniMark web server relay uses to
communicate with OmniMark service

programs

"POWERED 5y iy ﬂ
O M NA R K

OmniMark service URL

The general format for an OmniMark service URL Is:

http://host: port/om webserver-rel ay/ ommi mar k- servi ce- nane?dat a

For example:

http://ww. ormi mar k. conf ontgi r. exe/ omecho?first=Billy& ast =Jones

"POWERED 8y iy
O M NA R K

Passing parameters: forms

 See the acti on and net hod parameters

<FORM METHOD=post ACTI ON="/Dbi n/ ontgir.exe/ omecho?">
<P>You are:

<SELECT NAME= "who">
<OPTI ON VALUE="Joe" >Joe
<OPTI ON VALUE= "W Il lianm>WIIliam
<OPTI ON VALUE= "Jack">Jack
<OPTI ON VALUE= "Averell">Averell
</ SELECT>
</ FORW>

"POWERED 8y iy
O M NA R K

CGIl vs OmniMark web service

CGI Program OM Web Service

— Standalone program — Web server extension

— EXxpensive process (CPU, — Lightweight thread
memory) — OM servers can run on the

— Limit on the number of CGI network on many machines
programs that can run — Allows for extensively

— CGI programs run on the distributed computing
same machine as the web — Gracefully handles peak load
Server — Do initialization only once

- No oppor_tunity for distributed — Keep other connection alive
computation

— Buckles under peak load
— Quick to write

CGIl vs OmniMark web service
 CGlis good for quick applications that are not

Invoked very often or don’t need a lot of
resources

« OmniMark web services are good for crucial
applications that need a quick answer, run
24/7, or may need a lot of initialization

omasf

« omasf. xi n is an OmniMark program template
used to write web server programs
communicating with OmniMark web server relays

* To define your own logic, just implement three
functions in omasf . xom

— Servicelnitiate
— ServiceTerm nat e
— ServiceMai n

"POWERED 8y iy
O M NA R K

omasf

« The onasf . xi n template uses the omtcp

library to communicate with the web server
relay using TCP/IP

« onasf . xi n implements the server loop
e onasf. X1 n also closes the connection

POWERED BY
O FA,NRA R K

omasf

 The framework parses encoded requests into

two keyed shelves which are passed to the
Ser vi ceMal n function:

— request Header
— request Body

« omasf. xi n also associates the current output
with the response stream, meaning that
anything output in Ser vi ceMal n Is
automatically transmitted back to the client for

you

PGWFHED B_
o FN "':n RK

Servicelnitialize

2

Open service port
>V
Accept connection

omasf.xin Flowchart

N
Read request header line
Parse into keyed shelf
2
Read request body line
Parse into keyed shelf

Y

Areyou
poison_pill
request?

YES

U No

Associate OUTPUT with
response stream

Y
ServiceMain)
ServiceT erminate

N

Close connection
J

i =
L '== — L— (= -omnlmarl(

E U R O-EDITJON

"POWERED 5y iy
O M NA R K

Using omasf.xin

 When you want to use the server framework, in
onmasf. xom..

decl are no-default-io

gl obal counter ListenPort initial {5700}

gl obal stream User Poi sonPil | Key initial {"PO SO\ PILL"}
gl obal stream UserPoisonPillValue initial {"die"}

gl obal stream Servi ceNane initial {”"servicenane"}

I ncl ude ' omasf. xin'

ﬁm
Using omasf

define function Servicelnitialize
as
; add code needed at server start up

define function ServiceTerm nate
as
: add code needed at server shut down

define function ServiceMin
(read-only streamrequest Header,
read-only stream request Body)
as
; business logic starts here.., output Content-type, and the
; response stream

Y e Ay)
E U R 0-EDIT!ON

"POWERED 5y iy
O M NA R K

Passing information: Web Server Relay

e General form:

http://host: port/om webserver-rel ay/ ommi mar k- servi ce- nane?dat a

 Example:

http: /1 ocal host/bi n/ontgir. exe/ omasf ?dat a=i n. t xt

e Link:

 Cick Here </ A>

uﬁnm&rﬁ'ﬂnx @
Getting the parameters
 The onasf . xi n framework populates 2

keyed stream shelves: r equest Header and
r equest Body

« Key = name of the parameter
« Value = value of the parameter

* Access them and build your business logic
accordingly!

=l

Practical example

Programming based approach

POWERED E¥ D Y Y o L N

O MNIMARK
¥ EURO-EDIT!ON

'ﬁfﬂ
~ Send HTML: programming approach

decl are #process-out put has bi nary-node
macro CRLF is “%3#%0#” nacro-end

process
out put “Content-type: text/htm”
|| CRLF [|* 2
|| “ <HTML><HEADER><TI TLE>Hel | o</ TI TLE>"
* </ HEADER>"
* <BODY>"

N
N
|| “<Hl>Hell o Omi Mark Devel opers! </ H1>"
|| “</BODY></HTM.>"

=l

Practical example

Template: basic substitution

POWERED B

uﬁumﬁ'{nnu

"POWERED 8y iy %
O M NA R K

Basic substitution

o Simplest form of template is value substitution

 Choose atag style
— Easy to pick out in the template
— Unlikely to interfere with text of template

* | like "<<<tag>>>"

— "<<<" stands out
— In HTML it would be escaped as "< < <"

' PGW.-E‘HED BV:“ ﬂ
o FN ﬂ'l""n RK

Example

e Template ‘web-page.tpl’

<HTM_>
<BODY>
<H1>
Happy Dbirthday <<<NAME>>>
</ Hl>
</ BODY>
</ HTM.>

ey =
E U R O-EDITJON

"POWERED 8y iy
O M NA R K

Basic substitution

* Process by scanning the template:

gl obal stream formdata vari abl e
process
Cd GetData into formdata
submt file *web-page.tpl’

find " <<<NAME>>>"
out put formdata{"nane"}

' PGW.-E‘HED BV:“ ﬂ
o FN ﬂ'l""n RK

Scanning process

* Invoke the pattern processor
—submt file * filenane’

e Write find rules
—find ¢ <<<NAMVE>>> '

%}{w-\v -
L1 '== ‘=* ; = omnlmarl(

E. U R -0 EDITJON

"POWERED BY D
O M NA R K

Other scanning process

repeat scan file newtenpl ate
mat ch any++ => st uff
| ookahead ("<<<" | =)
out put stuff
mat ch " <<<Wor d>>>"
out put formdata {"new word"}
mat ch " <<<Acti on>>>"
out put cgi -dat a{" SCRI PT_NAME"}
|| "/1ogin"

=l

Template: tag substitution

Centralized processing

POWERED BY D Yyl

O MNIMARK
¥ EURO-EDIT!ON

“POWERED BY
O M NA R K

Centralized processing

 |f you use multiple templates, centralize
processing

define function process-tenpl ate
val ue streamtenplate-file

using read-only stream substitutes
as

repeat scan file tenplate-file

'ﬁﬁ_
Centralized processing

mat ch any++ => stuff | ookahead ("<<<" | =|)
out put stuff
mat ch "<<<" letter+ => pl acehol der ">>>"
do when substitutes has key pl acehol der
out put substi tut es{pl acehol der}
el se
throw invalid-tenpl ate
done
mat ch any ;this should never fire
throw invalid-tenpl ate

"POWERED 8y iy
O M NA R K

Centralized processing

Process application data, then process template

set new substitutes {"Wrd"}
to formdata{"new word"}

set new substitutes{"Action"}
to cgi-data{"SCRI PT_NAME"} || "/l ogin"

process-tenpl ate unori gi nal -newword-tenpl ate
usi ng substitutes

=l

Template: tag substitution

Using referents

POWERED B

uﬁumﬁ'{nnu

“POWER

uﬁum&mﬁ"n
Alternative method

* Process template, then process application
data

 Template tags are placeholders

« Referents are placeholders!

e Output a referent for each template tag
e Supply the value as you come to it

“POWERED BY
O M NA R K

When do you use a referent in OmniMark?

 When you need to write something out, but
you don't necessarily know what it is yet

— Referents solve problems that would require multi-
pass programs in other languages

— Examples: cross references, table of contents, ...

"POWERED 8y iy
O M NA R K

Referent mechanism

e Write referents:

— Name the place where you are not sure what
value will be displayed

— Set the value when you know it
e ... and let OmniMark do the rest!

“POWERED BY
O M NA R K

Referents syntax

« Write out a referent instead of a string
out put referent referent-nane
out put referent “ref-1"

e At some time during processing, bind the referent to

a string value
set referent referent-nanme to StringVal ue
set referent “ref-1" to “Refer to Chapter 2

e Two separate actions

— You can set a referent and not output it, and you can output
a referent and not set it

¢ pﬂW-E‘HED BV:“
o FN ﬂ'l""n RK

Quick example

gl obal integer letter-count initial {0}

process
out put referent “final-count”
submt “this is the text to be processed by the find rul es”

set referent “final-count” to “There are %l(l etter-count)
| etters in the follow ng text: %"

find letter => | et
i ncrenent | etter-count
out put | et

' PGWEHED BY
O F,NRVA R K

Other things to know about referents

* Resolution occurs at end of referent scope
(end of program by default)

e Last value stored in referent is the one
displayed
e Referent names are string expressions and

are case sensitive
— Use dynamic names and names that make sense!

“POWERED BYID
O M NA R K

Using referents for template processing

repeat scan file tenplate-file-nane

match ([\"<"]+ or
"<" | ookahead not "<<")+ => stuff
out put stuff

mat ch "<<<" letter+ => pl acehol der ">>>"
out put referent placehol der

mat ch any
throw tenpl ate-error

agai n

"POWERED 5y iy
O M NA R K

Using referents for template processing

set referent "O der Tabl e"
to "<P>No itens ordered."

set referent "order cookie"
to ' Set-Cookie: order=;
|| 'expires=sat, 01-Jan-2000 12:12:12 GV

@:;mniﬁtérk

CCL

Content Control Language

- T

E, & R O-EDITION

umml"j”nnu

o —C Y S—

Add intelligence to a template language

e Simple substitution does not always give the
designer/content provider sufficient control

« But template languages like Cold Fusion and
ASP may be too complex and require a
programmer

/-:M #
T o (92)
Add intelligence to a template language
« Create a template language with just enough

intelligence to do what the designer/content
provider needs

e |Leave the heavy lifting to programs written in
a full programming language

PC‘H"EHED BY
O FMLALLRA R K

Example

« OmniMark professional services did a project
for a major retailer

e Some items are on sale

* For these items we need to show sale price
as well as regular price

 Template includes special presentation
features for sale items

 We need to suppress those elements if the
item Is not on sale

uﬁnm&rﬁ'ﬂnx @
Add intelligence to a template language
A good balance is to enable the template

language to make basic decisions about what
to include and exclude

 Should be able to include and exclude
sections of the template as well as the data

“POWERED BY
O M NA R K

Add intelligence to a template language

 Need to be able to do loops for tabular data

« OmniMark is an ideal language for writing
template processing code
— Scoping perfect for implementing these features

e ———————————— ()

ALY
Content Control Language

* The rest of the presentation will cover CCL
(Content Control Language)

« CCL is intended as a didactic device for
teaching template processing techniques

* It may also be useful as a template for
developing your own template languages

* You should design a template language to fit
your particular business needs

“POWERED BY
O M NA R K

CCL: language specification

e Key points
— Provide control for displaying or hiding information

— All content comes from external services
 single value
e records

— String and Boolean variables for process control
— XML style syntax, with attributes

“POWERED BY
O M NA R K

CCL: control mechanism

e Basic control mechanism is a "try" block

 If any operation inside a try block fails, output
of everything in try block is suppressed

e Can test values in a try block to force a failure

'ﬁ'ﬂm
CCL: control mechanism
e Can use variables to make success of one try

block depend on the failure of another, or vice
versa

» ccl-action-failed state applies to each try
block

¢ pﬂW-E‘HED BV:“
o FN ﬂ'l""n RK

CCL: the tags

e ccl-value
e ccl-output
e ccl-test

e ccl-assert
e ccl-record
e ccl-field

e ccl-try

e ccl-cqgi

° CC -form

K\}{?‘g‘.-\\' -
L1 '== ‘=* ; = omnlmarl(

E. U R -0 EDITJON

PC‘H"EHED BY
O FMLALLRA R K

CCL: ccl-value tag

o example 1: <ccl-value source="time"
zone="gmt">

o example 2: <ccl-value source="time"
zone="gmt" set="time">

 Receives a value from a value service
e EXxtra attributes are passed to the service

o |f "set" attribute specified, value assigned to
named variable

e ccl-action-failed is set if no value received

"rOWERED EXYIID
O M NA R K

CCL: ccl-output tag

e example: <ccl-output variable="time">

o Outputs the value of the variable specified by
the "variable" attribute

FOWERED EYIID
¥ I

OMN&E’T’AHK
CCL: ccl-test tag

 example 1: <ccl-test variable="time"
comparison="<" compare-to="12:00:00">

o example 2: <ccl-test variable="time"
comparison="<" compare-to="12:00:00"
set="before-noon">

 Compares the value of the string variable
specified by the "variable" attribute with the
string specified by the "compare-to" attribute
using the comparison specified by the
"comparison" attribute.

CCL: ccl-test comparisons

e -"=" equals

e -"<" |ess than

e -">" greater than

e -"In" variable is in the compare-to value

s}{?‘g‘.-\v
L1 '=’ ‘=* ; = omnlmarl(

E. U R -0 EDITJON

“POWERED BY
O M NA R K

CCL: ccl-test comparisons

e - "contains" variable contains the compare-to
value

e - "begins" variable starts the compare-to
value

e - "begins-with" variable starts with the
compare-to value

POWERED BY
O FA,NRA R K

CCL: ccl-assert tag

e example: <ccl-assert true="before-noon">
o example: <ccl-assert false="before-noon">

* Tests the Boolean variable specified by the
"true" or "false" attribute. Sets ccl-action-
failed If the assertion fails.

e ccl-assert Is used within a try block to test a
condition occurring earlier in the template.

PC‘H"EHED BY T
O FMLALLRA R K

CCL: ccl-record tag

e example: <ccl-record source="customer"
Id="%value(customer-id)"> ... </ccl-record>

 Reqguests one or more records from a service
* Fleld values are returned by ccl-field tags

 |f the service returns more than one record,
the block defined by the start and end ccl-
record tags is repeated for each record.

 Record tags can be nested

T VR Ty"-) W—
e (108
CCL: ccl-field tag

» example 1: <ccl-field name="city">

o example 2: <ccl-field name="city" set="city-
name">

 Retrieves the value of a field in the current
record

 |f the "set" attribute Is not specified, outputs
the value

 |f the "set" attribute Is specified, assigns the
value to the string variable named by the "set"
attrlbute

PGWE-HED BY
on K

MN&IFH._'AH
CCL: ccl-try tag

« example 1: <ccl-field name="city">

o example 2: <ccl-field name="city" set="city-
name">

* Retrieves the value of a field in the current
record. If the "set" attribute is not specified,
outputs the value. If the "set" attribute is
specified, assigns the value to the string
variable named by the "set" attribute.

' PGWEHED BY
o l";'I:N:l!lT'd"l_'A RK

CCL: ccl-try tag

« example: "<ccl-try>...</ccl-try>"

o example: "<ccl-try set="succeeded">...</ccl-
try>"

« Defines a try block

* You can specify a Boolean variable in the
optional "set" parameter

 The variable is set to true if the try block
succeeds and to false if it fails

e Try blocks can be nested

“POWERED BY A
o I':I'I:N:l!f'ﬂ_'n RK

CCL: ccl-cgi tag

o example 1: <ccl-cgi
name="QUERY_STRING">

o example 2: <ccl-cgi
name="QUERY_STRING" set="query">

e Outputs the value of the CGI environment
variable specified by the "name" attribute.

 If the cgi variable is not found, ccl-action-
failed Is set to true.

'ﬁﬂ. %
CCL: ccl-form tag

 example 1: <ccl-form name="name">

e example 2: <ccl-form name="name"
set="name">

e Outputs the value of the form variable
specified by the "name" attribute.

e |f the form variable i1s not found, ccl-action-
falled Is set to true.

"POWERED 8y iy %
O M NA R K

Configure web server to run CCL

e Configuring IIS to run OmniMark CGl
programs
— C:\OmniMark\omnimark.exe -sb %s

e Configuring IIS to run CCL programs
— C:\OmniMark\omnimark.exe -sb ccl.xom %s

"POWERED 8y iy
O M NA R K

Implementation: Processing the ccl template

e Submit the template named on the command
line:
process
Cd GetEnv into cgi-data
CA GetQuery into formdata
out put "Content-type: text/htm"
|| crlf
|| crlf
submt file #args|1]

"POWERED 8y iy %
O M NA R K

Implementation: Find tags and arguments

* Find ccl tags
find "<ccl-" letter+ => command

 interior of ccl tag Is a nested context so...
repeat scan #current-i nput

e —cr, S—

Why not use XML parser?

 Templates don't have to be well formed XML
 |t's just as easy to use find rules

e This method lets me illustrate streaming
technigques

 The program needs to capture and re-scan
markup between record tags

"POWERED 8y iy ﬂ
O M NA R K

Select the command to execute

e Can't use do scan because it would shadow

#current-input in the functions
do when command matches ul "test" =|
ccl-test argunent
el se when command matches ul "cgi" =|
ccl-cgi argunent
el se when command matches ul "forni =
ccl -form ar gunent

'ﬁvm
The "cgl" command

, "cgl" command
defi ne function ccl-cqi
read-only stream ar gunent
as
do when argunent has key "set"
new ccl -string{argunment{"set"}}
unl ess ccl-string has key argunent{"set"}
set ccl-string{argunent{"set"}}
to cgi-dataf{argunent{"nane"}}
el se
out put cgi - dat a{argunent {" nane"}}
done

“POWERED BY
o I':I'I:N:l!f'ﬂ_'n RK

The "try" structure

* The try structure spans a section of the
template

|t redirects output to a buffer by creating a
new output scope and submitting #current-

Input
 Because try structures can be nested, we
need a stack of buffers

e We also need a stack of ccl-action-failed
variables

I ——— e —

MALIOTA
The "try" structure: push on the stack

 Push new conditional-output buffer and ccl-
action-failed test onto try stack

new condi ti onal - out put
new ccl -action-fail ed

 Direct all output in the try block to conditional
output buffer

open condi tional -out put as buffer
usi ng out put as conditi onal - out put
submt #current-input

¢ pGWEHED BY A
O F,NRVA R K

The "try" structure: succeed or fall

e Catch end of try block scope
catch cl ose-ccl -tag nane

e Check for well-formed ccl markup
throw ccl-error unless nane = "try"

e Output the conditional output if no errors
occurred in the try block

cl ose condi ti onal - out put

out put condi ti onal - out put
unl ess ccl-action-failed

"POWERED 8y iy %
O M NA R K

The "try" structure: set the test variable

do when argunent has key "set"
do when ccl-swtch has key argunment{"set"}
set ccl-swtch{argunent{"set"}}
to! ccl-action-failed
el se
set new ccl-swtch{argunent{"set"}}
to! ccl-action-failed

done
done

' POWEHED BY %
o l";'I:N:l!lT'd"l_'A RK

The "try" structure: pop it off the stack

e Simply remove the top item on the stack
renove condi ti onal - out put

renove ccl-action-fail ed

e Note how the stack mechanism works with
the scoping mechanism

* Note how little coding is required to support
nested try blocks

“POWERED BY
O M NA R K

The "value" command

e Calls the ccl-value-service function for the
data

« Creates new string variable, if "set" specified
do when argunent has key "set"
new ccl -string{argunment{"set"}}
unl ess ccl-string has key argunent{"set"}
set ccl-string{argunent{"set"}}
to ccl-val ue-service argunent{"source"}
par anet ers argunent

"POWERED 8y iy %
O M NA R K

The "value" command

e Otherwise, outputs the value
el se
out put ccl -val ue-service
argunent {"source"}
par anet ers argunent
done

e Sets ccl-action-failed if there I1s an error
catch ccl -val ue-service-error
set ccl-action-failed to true

"POWERED 8y iy
O M NA R K

The "ccl-value-service" function

* Looks up service in the service registry
(loaded at program start)

o Uses "take" and "drop" to break up service
address in form <machine name>:<port
number>

"POWERED BYIIID %
O M NA R K

How the services work

e Each service is provided by a daemon
process

« One daemon may provide one or more
services

e Services.txt file lists services:
order-info=sonic:6789

"POWERED 8y iy
O M NA R K

How the services work

e Request in in XML format
<service-request name="order-info">
<parameters source="order-info" 1d="1001"/>
</service-request>

* Programmers job: write services

'ﬁ'ﬂg
"ccl-value-service" : sending the request

open request as tcpConnecti onGet Qut put connection
prot ocol | OProtocol Mul ti Packet
usi ng out put as request
do
out put ' <service-request nanme=
| | service-sel ector
|| ' ">%n<paraneters
repeat over argunent
out put key of argunent
Il "="" || argument []

again
out put "/></service-request>"

“POWERED BY
O M NA R K

"ccl-value-service" : receiving the reply

e Stream connection to parser
e Stream processed XML to return-value

open return-val ue as buffer

usi ng out put as return-val ue

usi ng group parse-val ue-service

do xnl - parse

scan tcpConnecti onGet Source

connection protocol | OProtocol Mil ti Packet

out put " %"

done
cl ose return-val ue
return return-val ue

"POWERED 8y iy %
O M NA R K

The "ccl-record" command

e Must repeat the record block for each record
returned

* Achieve repetition by grabbing markup of
entire block and submitting once for each
record

"POWERED 8y iy %
O M NA R K

The "ccl-record" command

e Save ccl-current-record and ccl-record-values
to support nesting

e Save Is another way of implementing a stack
for nested structures, but does not allow open
streams -- so not suitable for the ccl-try
construct

AA

LU
The "ccl-record" command

* Note that between the scope/stack
mechanism used for try and the scope/stack
mechanism used for record, try blocks and
record blocks nest within each other to any
depth

« Trys within a record will be instantiated once
for each record and will be evaluated
iIndependently for each record

“POWERED BY
O MNWWA R K

"ccl-record” command: grabbing the markup

e Grabbing the markup is an interesting
problem

e ccl-record tags can be nested, so this won't
work:

e any** =>tag-markup "</ccl-record>"
 Need to match any number of nested records

« Calls for a recursive pattern matching
function

"POWERED BYIIID ﬂ%
O M NA R K

"ccl-record” command: grabbing the markup

set record-markup
to #current-input take

((any**
(ccl-record-start-tag
bet ween-ccl -record-tags
ccl-record-end-tag

))7

any** | ookahead ccl -record-end-tag)

'ﬁﬁ_
The " between-ccl-record-tags " function

e define swtch function between-ccl-record-tags
as
repeat scan #current-input
mat ch any** | ookahead
(ccl-record-start-tag |
ccl-record-end-tag)
mat ch ccl -record-start-tag
bet ween-ccl -record-tags
ccl-record-end-tag
mat ch val ue- end
return fal se
agai n
return true

“POWERED BY A
o I':I'I:N:l!f'ﬂ_'n RK

Recursive pattern matching functions

e Pattern matching functions return true or false
to pattern

e Don't need to capture the data they match,
the pattern itself does that

e Scan #current-input

e Call themselves when they spot start of a
nested structure

gﬂm
o f 'ARK

CCL Demo

gﬂm
o f 'ARK

Questions?

