
Tutorial: Designing Custom Template
Processing Languages Using XML

Christophe Chardonnet
Technical Consultant, OmniMark

2

Outline

• Introduction
– Template based approach
– Programming based approach
– Mixed approach: custom template language

• Technical environment
– OmniMark language
– CGI programs
– Server daemons

3

Outline

• Practical example:
– Programming approach
– Template: Basic substitution
– Centralized processing
– Using referents

• CCL: Content Control Language

Introduction

5

Why talk about template languages ?

• Because our professional service team has
found them to be an ideal solution in several
major projects

• Because they illustrate the power of the
streaming programming model

6

Why talk about template languages ?

• Because they are an effective solution you
probably would not even contemplate in
another language

• Let programmers program and designers
design

7

Building interactive web applications

• Two approaches to building interactive web
applications
– Use page templates with embedded code

• ASP
• Cold Fusion

– Write CGI or servlet programs
• OmniMark
• Perl
• Java

8

Template based approaches

– Quick and easy to start
– Non-programmers can do a lot of the work

• But:
– Complex operations are difficult to code
– Code base gets scattered all over your web site,

creating maintenance nightmare

9

Programming based approaches

– Provide maximum processing power
– Keep your code organized

• But:
– Lack flexibility
– Require programmer intervention to change even

simple elements
• Designers and content providers can't get their work

done
• Programmers are bogged down in boring maintenance

work

10

Mixed approach

• Build template processing into your
applications

• Give designers and content providers the
flexibility they need, without writing the whole
application in template pages

11

Mixed approach

• Keep control over your code base
• Design your template functionality to suit:

– your business practices
– division of responsibilities in your organization
– skill level of your colleagues

Tutorial: Technical environment

13

Tutorial: Practical application

• Let ’s design some custom template
language

• Use of the OmniMark language
• CGI or Web daemon programs

OmniMark language

15

OmniMark language

• XML and text programming language
– filters, batch conversions
– CGI, servers

• Streaming programming model
• Rule-based program structure
• Integrated XML and SGML parsers

16

Streaming model

• Data is streamed from a source
• Working process as it flows
• Data streams directly to output
• No buffering of input or output

17

Rule based

• Program execution begins in a process rule
• Invoke the markup processor (XML or SGML)

– do xml-parse ... or do sgml-parse …
– write element rules
– hierarchical streaming parsing model

• Invoke the pattern processor
– submit file …
– write find rules

CGI programs

19

OmniMark CGI program

Drwtsn32.log
Log file

HTTP CGI

20

From browser to browser …

• Browser accesses a URL that points to a CGI program
• Server activates the program and uses the CGI

protocol to pass the data sent by the client to the CGI
program

• CGI program acts on the data and does the required
processing

• CGI program returns a response to the web server
using the CGI protocol

• Web server sends the response to the client using
HTTP

21

HTTP

• Hypertext Transfer Protocol
– Communication standard between browsers and

web servers
– Stateless information retrieval network protocol
– Based on TCP/IP (Transmission Control

Protocol/Internet Protocol) connections

22

Common Gateway Interface

• The Common Gateway Interface is a protocol
that allows web servers to communicate with
other programs
– Web server invokes the program and sends input

data to the program
– The program runs and output data is sent to the

web server

23

HTTP communication

• That’s the job of the web server!
• But you need to know …

– How to specify and analyze requests (URL, HTML
forms, decoding data …) from a browser

– What the web server needs to send to the browser

24

CGI communication

• The web server should invoke OmniMark
whenever an OmniMark CGI program is
requested
– Implies setting up the web server

• Passing data is standardized
– Know how web servers pass input data
– Know what web servers expect from CGI

25

The browser can request …

• An OmniMark program directly
– Conventional extension is “*.xom”

• An OmniMark arguments file
– Conventional extension is “*.xar”
– Tells where to find the OmniMark program
– Can contain many other options
– Is the preferred method because it is more flexible

26

URL

• Uniform Resource Locator
– An address scheme for specifying Internet

resources

http://www.omnimark.com:80/docs/index.htm

HTTP protocol

Domain name

Port number

Resource details
(path and filename)

27

URL

• URL components
– Protocol: HTTP, FTP, etc
– Domain name: the site on which the server is running
– Port number: port at which the server is listening
– Resource details:

• file
• gateway program
• …

28

URL to invoke a CGI

• Invoking an OmniMark file
http://www.omnimark.com/scripts/hello.xom

• Invoking an OmniMark arguments file
http://www.omnimark.com/scripts/hello.xar

29

Web server invokes OmniMark because …

• On UNIX and Linux systems
– The #! directive appears on the first line of the

CGI program and tells the web server where to
find the OmniMark executable:

• OmniMark program
#!/usr/bin/omnimark/omnimark -sb

• OmniMark arguments file
#!/usr/bin/omnimark/omnimark -f

30

Web server invokes OmniMark because…

• On Windows operating systems
– Depending on the requested file extension, you

need to set up the web server to invoke a program
– Set up the web server by associating file

extensions with the OmniMark executable:
“.xom” = “omnimark.exe -sb %s”

“.xar” = “omnimark.exe -f %s”

31

Command line

omnimark is OmniMark C/VM (compiler/ virtual
machine)

-sb program.xom

– Run the program “program.xom”
-f arg.xar

– Pass parameters through arg.xar arguments
file. This file contains command-line options
including
-sb program.xom

32

Using OmniMark VM

• You can produce a compiled program from
your source code using OmniMark C, and
use OmniMark VM to invoke it
omnivm -load prog.xvc

• That way, your code is protected

33

Example: setting up IIS

• It depends on the version of IIS, but for
mine...
– Open the “IIS Management Console”
– Select “Default Web Site”
– Right-click on “Properties”
– Select “Home Directory” and then “Configuration”
– …

34

Example: Setting up IIS … continued

• You will see a list of associations between
extensions and executables

• Add one for “*.xom” files
*.xom = omnimark -sb %s

• Add one for “*.xar” files
*.xar = omnimark -f %s

35

Directories and virtual directories

• Home directory: is directly mapped to your
domain name

• Virtual directory: choose a mapping between
a physical directory and an alias name

• Directory permission: read, execute, and
script

36

File and directory permissions

• Invoked file must be in a web server directory with
“script” permissions

• Invoking an arguments file
– Web server must be able to execute and read the

arguments file
– OmniMark program must be readable

• Invoking a program directly
– Web server must be able to execute and read the

OmniMark CGI program

37

Giving permissions to a web directory

• By convention the “script” or “cgi” directories
are set up with script permission

• You can choose permissions for each
directory

• Subdirectories inherit permissions
– You can organize different projects in different

directories

38

Let’s invoke an OmniMark program!

• First OmniMark CGI program:
#!omnimark -sb

process

output “Content-type: text/plain”

|| “%13#%10#” ||*2

|| “Hello you!”

39

Let’s invoke an arguments file!

• Arguments file hello.xar
#!omnimark.exe -f

-sb hello.xom

• OmniMark program hello.xom
process

output “Content-type: text/plain”

|| “%13#%10#” ||*2

|| “Hello you!”

40

Error messages

• Handling CGI program error messages
– If your program has an error, the result shown in

the browser is not always helpful
– Often displays nothing more than:
“CGI program returned an incomplete set
of HTTP headers”

41

Using “-log” or “-alog”

• Causes all OmniMark error messages to be written to
the specified file

• Use arguments files!
#!omnimark.exe -f

-sb hello.xom

-log d:\inetPub\logs\omni\hello.log

42

Create arguments files

• You can use the “project files” the IDE
creates
– Save them as “*.xar”
– Modify them to add more options such as the -
log option

43

CGI directories organization

• READ access for static pages
• “root” directory for static pages

C:\InetPub\wwwroot\cgiclass

Access it with
“http://localhost/cgiclass/file.htm”

or
“http://127.0.0.1/cgiclass/file.htm”

44

SCRIPT access for CGI

• “script” directory for “*.xar” files
C:\InetPub\cgi\cgiclass

• Access it with
http://localhost/cgi/cgiclass/file.xar

or
http://127.0.0.1 /cgi/cgiclass/file.xar

45

Sending output data

• Any data your CGI program sends to
standard output is sent to the browser

• output “foo” writes “foo” to
#current-output which is, by default,
connected to the standard output

46

Standard output and CGI

• #process-output should be set to binary-
mode, and can also be unbuffered

declare #process-output has binary-mode

declare #process-output has unbuffered

47

What about HTTP?

• The web server should understand data sent
by your program
– Should be HTTP compliant

48

HTTP response

• HTTP header tells the browser how to
interpret incoming data

• A blank line following the HTTP header tells
the browser that the header is complete

• All other data sent to standard output will be
interpreted by the browser — this is the data
you want to display

49

Basic HTTP headers

• HTTP header examples
– Content-type: text/plain

– Content-type: text/html

– Content-type: image/gif

– Cookies ...

output “Content-type: text/plain”

|| “%13#%10#” ||* 2

50

OmniMark CGI example
declare #process-output has binary-mode

macro CRLF is “%13#%10#” macro-end

process

output “Content-type: text/plain”

|| CRLF ||* 2

||“Hello OmniMark Developers!”

OmniMark service daemons

52

CGI request

• Shortcomings:
– Gateway programs are server-side programs that must run

on the same machine as the web server. Therefore, they do
not allow for distributed processing.

– Gateway programs are not scalable — there is a limit on
how many of these programs can run simultaneously

– Gateway programs start and stop each time a new request
arrives

53

OmniMark service programs
in a web environment

WWW
server

HTTP

OM
web

server
relay

OmniMark
service

programomrelay.ini

SERVER
API

OM web
protocol

54

OmniMark service programs …

• … are server programs listening 24/7 for a request
on a TCP/IP port

• When a request arrives, the server accepts it,
processes it, and sends the response

• OmniMark service program is then ready again to
accept a new request

• Communication (request/response) is compliant
with the OmniMark web protocol

55

OmniMark web server relays

• OmniMark web server relays handle communication
between the web server and OmniMark service
programs
– OMCGIR for any CGI-compliant web servers

56

OmniMark web protocol

• The OmniMark web protocol is a client/server
protocol that describes the mechanism the
OmniMark web server relay uses to
communicate with OmniMark service
programs

57

OmniMark service URL

The general format for an OmniMark service URL is:

http://host:port/om-webserver-relay/omnimark-service-name?data

For example:

http://www.omnimark.com/omcgir.exe/omecho?first=Billy&last=Jones

58

Passing parameters: forms

• See the action and method parameters

<FORM METHOD=post ACTION="/bin/omcgir.exe/omecho?">

<P>You are:

<SELECT NAME= "who">

<OPTION VALUE="Joe">Joe

<OPTION VALUE= "William">William

<OPTION VALUE= "Jack">Jack

<OPTION VALUE= "Averell">Averell

</SELECT>

</FORM>

59

CGI vs OmniMark web service

CGI Program
– Standalone program
– Expensive process (CPU,

memory)
– Limit on the number of CGI

programs that can run
– CGI programs run on the

same machine as the web
server

– No opportunity for distributed
computation

– Buckles under peak load
– Quick to write

OM Web Service
– Web server extension
– Lightweight thread
– OM servers can run on the

network on many machines
– Allows for extensively

distributed computing
– Gracefully handles peak load
– Do initialization only once
– Keep other connection alive

60

CGI vs OmniMark web service

• CGI is good for quick applications that are not
invoked very often or don’t need a lot of
resources

• OmniMark web services are good for crucial
applications that need a quick answer, run
24/7, or may need a lot of initialization

61

omasf

• omasf.xin is an OmniMark program template
used to write web server programs
communicating with OmniMark web server relays

• To define your own logic, just implement three
functions in omasf.xom
– ServiceInitiate

– ServiceTerminate

– ServiceMain

62

omasf

• The omasf.xin template uses the omtcp
library to communicate with the web server
relay using TCP/IP

• omasf.xin implements the server loop
• omasf.xin also closes the connection

63

omasf

• The framework parses encoded requests into
two keyed shelves which are passed to the
ServiceMain function:
– requestHeader

– requestBody

• omasf.xin also associates the current output
with the response stream, meaning that
anything output in ServiceMain is
automatically transmitted back to the client for
you

64

omasf.xin Flowchart

ServiceInitialize

Open service port

Accept connection

Read request header line
Parse into keyed shelf

Are you
poison_pill

request?

Read request body line
Parse into keyed shelf

Associate OUTPUT with
response stream

ServiceMain

Close connection

ServiceTerminate

YES

NO

65

Using omasf.xin

• When you want to use the server framework, in
omasf.xom…

declare no-default-io

global counter ListenPort initial {5700}

global stream UserPoisonPillKey initial {"POISON-PILL"}

global stream UserPoisonPillValue initial {"die"}

global stream ServiceName initial {”servicename"}

include 'omasf.xin'

66

Using omasf
define function ServiceInitialize

as

; add code needed at server start up

define function ServiceTerminate

as

; add code needed at server shut down

define function ServiceMain

(read-only stream requestHeader,

read-only stream requestBody)

as

; business logic starts here…, output Content-type, and the

; response stream

67

Passing information: Web Server Relay

• General form:
http://host:port/om-webserver-relay/omnimark-service-name?data

• Example:
http:/localhost/bin/omcgir.exe/omasf?data=in.txt

• Link:
 Click Here

68

Getting the parameters

• The omasf.xin framework populates 2
keyed stream shelves: requestHeader and
requestBody

• Key = name of the parameter
• Value = value of the parameter
• Access them and build your business logic

accordingly!

Practical example

Programming based approach

70

Send HTML: programming approach
declare #process-output has binary-mode

macro CRLF is “%13#%10#” macro-end

process

output “Content-type: text/html”

|| CRLF ||* 2

|| “<HTML><HEADER><TITLE>Hello</TITLE>”

|| “</HEADER>”

|| “<BODY>”

|| “<H1>Hello OmniMark Developers!</H1>”

|| “</BODY></HTML>”

Practical example

Template: basic substitution

72

Basic substitution

• Simplest form of template is value substitution
• Choose a tag style

– Easy to pick out in the template
– Unlikely to interfere with text of template

• I like "<<<tag>>>"
– "<<<" stands out
– In HTML it would be escaped as "< < <"

73

Example

• Template ‘web-page.tpl’

<HTML>

<BODY>

<H1>

Happy birthday <<<NAME>>>

</H1>

</BODY>

</HTML>

74

Basic substitution

• Process by scanning the template:

global stream form-data variable

process

CGIGetData into form-data

submit file ‘web-page.tpl’

find "<<<NAME>>>"

output form-data{"name"}

75

Scanning process

• Invoke the pattern processor
– submit file ‘ filename ’

• Write find rules
– find ‘ <<<NAME>>> ’

76

Other scanning process

repeat scan file new-template

match any++ => stuff

lookahead ("<<<" | =|)

output stuff

match "<<<Word>>>"

output form-data {"new_word"}

match "<<<Action>>>"

output cgi-data{"SCRIPT_NAME"}

|| "/login"

again

Template: tag substitution

Centralized processing

78

Centralized processing

• If you use multiple templates, centralize
processing

define function process-template

value stream template-file

using read-only stream substitutes

as

repeat scan file template-file

79

Centralized processing
match any++ => stuff lookahead ("<<<" | =|)

output stuff

match "<<<" letter+ => placeholder ">>>"

do when substitutes has key placeholder

output substitutes{placeholder}

else

throw invalid-template

done

match any ;this should never fire

throw invalid-template

80

Centralized processing

Process application data, then process template
set new substitutes {"Word"}

to form-data{"new_word"}

set new substitutes{"Action"}

to cgi-data{"SCRIPT_NAME"} || "/login"

process-template unoriginal-new-word-template

using substitutes

Template: tag substitution

Using referents

82

Alternative method

• Process template, then process application
data

• Template tags are placeholders
• Referents are placeholders!
• Output a referent for each template tag
• Supply the value as you come to it

83

When do you use a referent in OmniMark?

• When you need to write something out, but
you don't necessarily know what it is yet
– Referents solve problems that would require multi-

pass programs in other languages
– Examples: cross references, table of contents, …

84

Referent mechanism

• Write referents:
– Name the place where you are not sure what

value will be displayed
– Set the value when you know it

• … and let OmniMark do the rest!

85

Referents syntax

• Write out a referent instead of a string
output referent referent-name

output referent “ref-1”

• At some time during processing, bind the referent to
a string value

set referent referent-name to StringValue

set referent “ref-1” to “Refer to Chapter 2”

• Two separate actions
– You can set a referent and not output it, and you can output

a referent and not set it

86

Quick example

global integer letter-count initial {0}

process

output referent “final-count”

submit “this is the text to be processed by the find rules”

set referent “final-count” to “There are %d(letter-count)
letters in the following text:%n”

find letter => let

increment letter-count

output let

87

Other things to know about referents

• Resolution occurs at end of referent scope
(end of program by default)

• Last value stored in referent is the one
displayed

• Referent names are string expressions and
are case sensitive
– Use dynamic names and names that make sense!

88

Using referents for template processing

repeat scan file template-file-name

match ([\"<"]+ or

"<" lookahead not "<<")+ => stuff

output stuff

match "<<<" letter+ => placeholder ">>>"

output referent placeholder

match any

throw template-error

again

89

Using referents for template processing

set referent "OrderTable"
to "<P>No items ordered."

set referent "order cookie"
to 'Set-Cookie: order=; '
|| 'expires=sat, 01-Jan-2000 12:12:12 GMT'

CCL

Content Control Language

91

Add intelligence to a template language

• Simple substitution does not always give the
designer/content provider sufficient control

• But template languages like Cold Fusion and
ASP may be too complex and require a
programmer

92

Add intelligence to a template language

• Create a template language with just enough
intelligence to do what the designer/content
provider needs

• Leave the heavy lifting to programs written in
a full programming language

93

Example

• OmniMark professional services did a project
for a major retailer

• Some items are on sale
• For these items we need to show sale price

as well as regular price
• Template includes special presentation

features for sale items
• We need to suppress those elements if the

item is not on sale

94

Add intelligence to a template language

• A good balance is to enable the template
language to make basic decisions about what
to include and exclude

• Should be able to include and exclude
sections of the template as well as the data

95

Add intelligence to a template language

• Need to be able to do loops for tabular data
• OmniMark is an ideal language for writing

template processing code
– Scoping perfect for implementing these features

96

Content Control Language

• The rest of the presentation will cover CCL
(Content Control Language)

• CCL is intended as a didactic device for
teaching template processing techniques

• It may also be useful as a template for
developing your own template languages

• You should design a template language to fit
your particular business needs

97

CCL: language specification

• Key points
– Provide control for displaying or hiding information
– All content comes from external services

• single value
• records

– String and Boolean variables for process control
– XML style syntax, with attributes

98

CCL: control mechanism

• Basic control mechanism is a "try" block
• If any operation inside a try block fails, output

of everything in try block is suppressed
• Can test values in a try block to force a failure

99

CCL: control mechanism

• Can use variables to make success of one try
block depend on the failure of another, or vice
versa

• ccl-action-failed state applies to each try
block

100

CCL: the tags

• ccl-value
• ccl-output
• ccl-test
• ccl-assert
• ccl-record
• ccl-field
• ccl-try
• ccl-cgi
• ccl-form

101

CCL: ccl-value tag

• example 1: <ccl-value source="time"
zone="gmt">

• example 2: <ccl-value source="time"
zone="gmt" set="time">

• Receives a value from a value service
• Extra attributes are passed to the service
• If "set" attribute specified, value assigned to

named variable
• ccl-action-failed is set if no value received

102

CCL: ccl-output tag

• example: <ccl-output variable="time">
• Outputs the value of the variable specified by

the "variable" attribute

103

CCL: ccl-test tag

• example 1: <ccl-test variable="time"
comparison="<" compare-to="12:00:00">

• example 2: <ccl-test variable="time"
comparison="<" compare-to="12:00:00"
set="before-noon">

• Compares the value of the string variable
specified by the "variable" attribute with the
string specified by the "compare-to" attribute
using the comparison specified by the
"comparison" attribute.

104

CCL: ccl-test comparisons

• - "=" equals
• - "<" less than
• - ">" greater than
• - "in" variable is in the compare-to value

105

CCL: ccl-test comparisons

• - "contains" variable contains the compare-to
value

• - "begins" variable starts the compare-to
value

• - "begins-with" variable starts with the
compare-to value

106

CCL: ccl-assert tag

• example: <ccl-assert true="before-noon">
• example: <ccl-assert false="before-noon">
• Tests the Boolean variable specified by the

"true" or "false" attribute. Sets ccl-action-
failed if the assertion fails.

• ccl-assert is used within a try block to test a
condition occurring earlier in the template.

107

CCL: ccl-record tag

• example: <ccl-record source="customer"
id="%value(customer-id)"> ... </ccl-record>

• Requests one or more records from a service
• Field values are returned by ccl-field tags
• If the service returns more than one record,

the block defined by the start and end ccl-
record tags is repeated for each record.

• Record tags can be nested

108

CCL: ccl-field tag

• example 1: <ccl-field name="city">
• example 2: <ccl-field name="city" set="city-

name">
• Retrieves the value of a field in the current

record
• If the "set" attribute is not specified, outputs

the value
• If the "set" attribute is specified, assigns the

value to the string variable named by the "set"
attribute

109

CCL: ccl-try tag

• example 1: <ccl-field name="city">
• example 2: <ccl-field name="city" set="city-

name">
• Retrieves the value of a field in the current

record. If the "set" attribute is not specified,
outputs the value. If the "set" attribute is
specified, assigns the value to the string
variable named by the "set" attribute.

110

CCL: ccl-try tag

• example: "<ccl-try>...</ccl-try>"
• example: "<ccl-try set="succeeded">...</ccl-

try>"
• Defines a try block
• You can specify a Boolean variable in the

optional "set" parameter
• The variable is set to true if the try block

succeeds and to false if it fails
• Try blocks can be nested

111

CCL: ccl-cgi tag

• example 1: <ccl-cgi
name="QUERY_STRING">

• example 2: <ccl-cgi
name="QUERY_STRING" set="query">

• Outputs the value of the CGI environment
variable specified by the "name" attribute.

• If the cgi variable is not found, ccl-action-
failed is set to true.

112

CCL: ccl-form tag

• example 1: <ccl-form name="name">
• example 2: <ccl-form name="name"

set="name">
• Outputs the value of the form variable

specified by the "name" attribute.
• If the form variable is not found, ccl-action-

failed is set to true.

113

Configure web server to run CCL

• Configuring IIS to run OmniMark CGI
programs
– C:\OmniMark\omnimark.exe -sb %s

• Configuring IIS to run CCL programs
– C:\OmniMark\omnimark.exe -sb ccl.xom %s

114

Implementation: Processing the ccl template

• Submit the template named on the command
line:
process

CGIGetEnv into cgi-data

CGIGetQuery into form-data

output "Content-type: text/html"

|| crlf

|| crlf

submit file #args[1]

115

Implementation: Find tags and arguments

• Find ccl tags
find "<ccl-" letter+ => command

• interior of ccl tag is a nested context so…
repeat scan #current-input

116

Why not use XML parser?

• Templates don't have to be well formed XML
• It's just as easy to use find rules
• This method lets me illustrate streaming

techniques
• The program needs to capture and re-scan

markup between record tags

117

Select the command to execute

• Can't use do scan because it would shadow
#current-input in the functions
do when command matches ul "test" =|

ccl-test argument

else when command matches ul "cgi" =|

ccl-cgi argument

else when command matches ul "form" =|

ccl-form argument

118

The "cgi" command
; "cgi" command

define function ccl-cgi

read-only stream argument

as

do when argument has key "set"

new ccl-string{argument{"set"}}

unless ccl-string has key argument{"set"}

set ccl-string{argument{"set"}}

to cgi-data{argument{"name"}}

else

output cgi-data{argument{"name"}}

done

119

The "try" structure

• The try structure spans a section of the
template

• It redirects output to a buffer by creating a
new output scope and submitting #current-
input

• Because try structures can be nested, we
need a stack of buffers

• We also need a stack of ccl-action-failed
variables

120

The "try" structure: push on the stack

• Push new conditional-output buffer and ccl-
action-failed test onto try stack

new conditional-output

new ccl-action-failed

• Direct all output in the try block to conditional
output buffer

open conditional-output as buffer

using output as conditional-output

submit #current-input

121

The "try" structure: succeed or fail

• Catch end of try block scope
catch close-ccl-tag name

• Check for well-formed ccl markup
throw ccl-error unless name = "try"

• Output the conditional output if no errors
occurred in the try block

close conditional-output

output conditional-output

unless ccl-action-failed

122

The "try" structure: set the test variable
do when argument has key "set"

do when ccl-switch has key argument{"set"}

set ccl-switch{argument{"set"}}

to ! ccl-action-failed

else

set new ccl-switch{argument{"set"}}

to ! ccl-action-failed

done

done

123

The "try" structure: pop it off the stack

• Simply remove the top item on the stack
remove conditional-output

remove ccl-action-failed

• Note how the stack mechanism works with
the scoping mechanism

• Note how little coding is required to support
nested try blocks

124

The "value" command

• Calls the ccl-value-service function for the
data

• Creates new string variable, if "set" specified
do when argument has key "set"

new ccl-string{argument{"set"}}

unless ccl-string has key argument{"set"}

set ccl-string{argument{"set"}}

to ccl-value-service argument{"source"}

parameters argument

125

The "value" command

• Otherwise, outputs the value
else

output ccl-value-service

argument{"source"}

parameters argument

done

• Sets ccl-action-failed if there is an error
catch ccl-value-service-error

set ccl-action-failed to true

126

The "ccl-value-service" function

• Looks up service in the service registry
(loaded at program start)

• Uses "take" and "drop" to break up service
address in form <machine name>:<port
number>

127

How the services work

• Each service is provided by a daemon
process

• One daemon may provide one or more
services

• Services.txt file lists services:
order-info=sonic:6789

128

How the services work

• Request in in XML format
<service-request name="order-info">
<parameters source="order-info" id="1001"/>
</service-request>

• Programmers job: write services

129

"ccl-value-service" : sending the request
open request as tcpConnectionGetOutput connection

protocol IOProtocolMultiPacket

using output as request

do

output '<service-request name="'

|| service-selector

|| '">%n<parameters '

repeat over argument

output key of argument

|| '="' || argument || '" '

again

output "/></service-request>"

done

130

"ccl-value-service" : receiving the reply

• Stream connection to parser
• Stream processed XML to return-value
open return-value as buffer

using output as return-value

using group parse-value-service

do xml-parse

scan tcpConnectionGetSource

connection protocol IOProtocolMultiPacket

output "%c"

done

close return-value

return return-value

131

The "ccl-record" command

• Must repeat the record block for each record
returned

• Achieve repetition by grabbing markup of
entire block and submitting once for each
record

132

The "ccl-record" command

• Save ccl-current-record and ccl-record-values
to support nesting

• Save is another way of implementing a stack
for nested structures, but does not allow open
streams -- so not suitable for the ccl-try
construct

133

The "ccl-record" command

• Note that between the scope/stack
mechanism used for try and the scope/stack
mechanism used for record, try blocks and
record blocks nest within each other to any
depth

• Trys within a record will be instantiated once
for each record and will be evaluated
independently for each record

134

"ccl-record" command: grabbing the markup

• Grabbing the markup is an interesting
problem

• ccl-record tags can be nested, so this won't
work:

• any** => tag-markup "</ccl-record>"
• Need to match any number of nested records
• Calls for a recursive pattern matching

function

135

"ccl-record" command: grabbing the markup

set record-markup
to #current-input take

((any**

(ccl-record-start-tag

between-ccl-record-tags

ccl-record-end-tag

))?

any** lookahead ccl-record-end-tag)

136

The " between-ccl-record-tags " function
• define switch function between-ccl-record-tags

as
repeat scan #current-input
match any** lookahead
(ccl-record-start-tag |
ccl-record-end-tag)

match ccl-record-start-tag
between-ccl-record-tags
ccl-record-end-tag

match value-end
return false

again
return true

137

Recursive pattern matching functions

• Pattern matching functions return true or false
to pattern

• Don't need to capture the data they match,
the pattern itself does that

• Scan #current-input
• Call themselves when they spot start of a

nested structure

138

CCL Demo

139

Questions?

